use-case-and-architecture/ai_computing_force_scheduling/train_model_vanilla.py
Weisen Pan a877aed45f AI-based CFN Traffic Control and Computer Force Scheduling
Change-Id: I16cd7730c1e0732253ac52f51010f6b813295aa7
2023-11-03 00:09:19 -07:00

128 lines
4.1 KiB
Python

"""
Author: Weisen Pan
Date: 2023-10-24
"""
import time
import torch
import numpy as np
import torch.nn.functional as F
from datetime import timedelta
from sklearn import metrics
from tqdm import tqdm
from scheduler import WarmUpLR, downLR
def get_time_difference(start_time):
"""Compute time elapsed from the start_time to now."""
elapsed_time = time.time() - start_time
return timedelta(seconds=int(round(elapsed_time)))
def train(config, model, train_iter, dev_iter, test_iter):
"""Train the model and evaluate on the development and test sets."""
start_time = time.time()
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
warmup_epoch = config.num_epochs // 2
iter_per_epoch = len(train_iter)
scheduler = downLR(optimizer, (config.num_epochs - warmup_epoch) * iter_per_epoch)
warmup_scheduler = WarmUpLR(optimizer, warmup_epoch * iter_per_epoch)
lr_list = np.zeros((config.num_epochs, 2))
dev_best_loss = float('inf')
dev_best_acc = 0
test_best_acc = 0
total_batch = 0
for epoch in range(config.num_epochs):
loss_total = 0
print(f'Epoch [{epoch + 1}/{config.num_epochs}]')
predictions, true_values = [], []
for trains, labels in tqdm(train_iter):
trains, labels = trains.to(config.device), labels.long().to(config.device)
outputs = model(trains)
loss = F.cross_entropy(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch < warmup_epoch:
warmup_scheduler.step()
else:
scheduler.step()
total_batch += 1
loss_total += loss.item()
predictions.extend(torch.max(outputs.data, 1)[1].tolist())
true_values.extend(labels.data.tolist())
train_acc = get_accuracy(true_values, predictions)
dev_acc, dev_loss = evaluate(config, model, dev_iter)
test_acc, test_loss = evaluate(config, model, test_iter)
if dev_loss < dev_best_loss:
dev_best_loss = dev_loss
improvement_marker = '*'
else:
improvement_marker = ''
if dev_acc > dev_best_acc:
dev_best_acc = dev_acc
test_best_acc = test_acc
elapsed_time = get_time_difference(start_time)
print((
f'Iter: {total_batch:6}, Train Loss: {loss_total/len(train_iter):.2f}, '
f'Train Acc: {train_acc:.2%}, Dev Loss: {dev_loss:.2f}, Dev Acc: {dev_acc:.2%}, '
f'Test Loss: {test_loss:.2f}, Test Acc: {test_acc:.2%}, Time: {elapsed_time} {improvement_marker}'
))
print(f'Best Dev Acc: {dev_best_acc:.2%}, Best Test Acc: {test_best_acc:.2%}')
test(config, model, test_iter)
def test(config, model, test_iter):
"""Evaluate the model on the test set."""
model.eval()
start_time = time.time()
test_acc, test_loss, test_confusion = evaluate(config, model, test_iter, test=True)
print(f'Test Loss: {test_loss:.2f}, Test Acc: {test_acc:.2%}')
print(test_confusion)
elapsed_time = get_time_difference(start_time)
print(f"Time usage: {elapsed_time}")
def evaluate(config, model, data_iter, test=False):
"""Evaluate the model on a given dataset."""
model.eval()
loss_total = 0
predictions, true_values = [], []
with torch.no_grad():
for texts, labels in data_iter:
texts, labels = texts.float().to(config.device), labels.long().to(config.device)
outputs = model(texts)
loss = F.cross_entropy(outputs, labels)
loss_total += loss.item()
predictions.extend(torch.max(outputs.data, 1)[1].tolist())
true_values.extend(labels.data.tolist())
acc = get_accuracy(true_values, predictions)
if test:
confusion = metrics.confusion_matrix(true_values, predictions)
return acc, loss_total / len(data_iter), confusion
return acc, loss_total / len(data_iter)
def get_accuracy(y_true, y_pred):
"""Calculate accuracy."""
return metrics.accuracy_score(y_true, y_pred)