1981ff7b5f
List open gerrit reviews on the elastic_recheck status page. Listing the reviews here can help us prioritize reviews of them. Currently one has to manually dig through the launchpad notes for gerrit review links, this automates that process. Instead of looking for jenkins comments in launchpad about open patches, directly query gerrit for open patches related to the bug on hand. Since gerrit only supports string matching and not regex for messages, just look for the bug number in the commit message. Our bug numbers are long enough that it unlikely the number will come up in other cases. Change-Id: Ida2144ccc5f0fdf91e2bd70714de80c83f4c1200
153 lines
5.4 KiB
Python
Executable File
153 lines
5.4 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
# Copyright 2013 OpenStack Foundation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License. You may obtain
|
|
# a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
# License for the specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import argparse
|
|
import base64
|
|
from datetime import datetime
|
|
import json
|
|
import os
|
|
|
|
from launchpadlib import launchpad
|
|
import requests
|
|
|
|
import elastic_recheck.elasticRecheck as er
|
|
from elastic_recheck import results as er_results
|
|
|
|
STEP = 3600000
|
|
|
|
LPCACHEDIR = os.path.expanduser('~/.launchpadlib/cache')
|
|
|
|
|
|
def get_launchpad_bug(bug):
|
|
lp = launchpad.Launchpad.login_anonymously('grabbing bugs',
|
|
'production',
|
|
LPCACHEDIR)
|
|
lp_bug = lp.bugs[bug]
|
|
bugdata = {'name': lp_bug.title}
|
|
projects = ", ".join(map(lambda x: "(%s - %s)" %
|
|
(x.bug_target_name, x.status),
|
|
lp_bug.bug_tasks))
|
|
bugdata['affects'] = projects
|
|
bugdata['reviews'] = get_open_reviews(bug)
|
|
return bugdata
|
|
|
|
|
|
def get_open_reviews(bug_number):
|
|
"return list of open gerrit reviews for a given bug."""
|
|
r = requests.get("https://review.openstack.org:443/changes/"
|
|
"?q=status:open++message:`%s`" % bug_number)
|
|
# strip off first few chars because 'the JSON response body starts with a
|
|
# magic prefix line that must be stripped before feeding the rest of the
|
|
# response body to a JSON parser'
|
|
# https://review.openstack.org/Documentation/rest-api.html
|
|
reviews = []
|
|
result = None
|
|
result = json.loads(r.text[4:])
|
|
for review in result:
|
|
reviews.append(review['_number'])
|
|
return reviews
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Generate data for graphs.')
|
|
parser.add_argument(dest='queries',
|
|
help='path to query file')
|
|
parser.add_argument('-o', dest='output',
|
|
help='output filename')
|
|
parser.add_argument('-q', dest='queue',
|
|
help='limit results to a specific query')
|
|
args = parser.parse_args()
|
|
|
|
classifier = er.Classifier(args.queries)
|
|
|
|
buglist = []
|
|
|
|
epoch = datetime.utcfromtimestamp(0)
|
|
ts = datetime.now()
|
|
ts = datetime(ts.year, ts.month, ts.day, ts.hour)
|
|
# ms since epoch
|
|
now = int(((ts - epoch).total_seconds()) * 1000)
|
|
# number of days to match to, this should be the same as we are
|
|
# indexing in logstash
|
|
days = 10
|
|
# How far back to start in the graphs
|
|
start = now - (days * 24 * STEP)
|
|
# ER timeframe for search
|
|
timeframe = days * 24 * STEP / 1000
|
|
|
|
for query in classifier.queries:
|
|
if args.queue:
|
|
query['query'] = query['query'] + (' AND build_queue:"%s"' %
|
|
args.queue)
|
|
if query.get('suppress-graph'):
|
|
continue
|
|
urlq = dict(search=query['query'],
|
|
fields=[],
|
|
offset=0,
|
|
timeframe=str(timeframe),
|
|
graphmode="count")
|
|
logstash_query = base64.urlsafe_b64encode(json.dumps(urlq))
|
|
bug_data = get_launchpad_bug(query['bug'])
|
|
bug = dict(number=query['bug'],
|
|
query=query['query'],
|
|
logstash_query=logstash_query,
|
|
bug_data=bug_data,
|
|
fails=0,
|
|
fails24=0,
|
|
data=[])
|
|
buglist.append(bug)
|
|
results = classifier.hits_by_query(query['query'],
|
|
args.queue,
|
|
size=3000)
|
|
|
|
facets_for_fail = er_results.FacetSet()
|
|
facets_for_fail.detect_facets(results,
|
|
["build_status", "build_uuid"])
|
|
if "FAILURE" in facets_for_fail:
|
|
bug['fails'] = len(facets_for_fail['FAILURE'])
|
|
|
|
facets = er_results.FacetSet()
|
|
facets.detect_facets(results,
|
|
["build_status", "timestamp", "build_uuid"])
|
|
|
|
for status in facets.keys():
|
|
data = []
|
|
for ts in range(start, now, STEP):
|
|
if ts in facets[status]:
|
|
fails = len(facets[status][ts])
|
|
data.append([ts, fails])
|
|
# get the last 24 hr count as well, can't wait to have
|
|
# the pandas code and able to do it that way
|
|
if status == "FAILURE" and ts > (now - (24 * STEP)):
|
|
bug['fails24'] += fails
|
|
else:
|
|
data.append([ts, 0])
|
|
bug["data"].append(dict(label=status, data=data))
|
|
|
|
# the sort order is a little odd, but basically sort by failures in
|
|
# the last 24 hours, then with all failures for ones that we haven't
|
|
# seen in the last 24 hours.
|
|
buglist = sorted(buglist,
|
|
key=lambda bug: -(bug['fails24'] * 100000 + bug['fails']))
|
|
|
|
out = open(args.output, 'w')
|
|
out.write(json.dumps(buglist))
|
|
out.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|