elastic-recheck/elastic_recheck/cmd/uncategorized_fails.py
Sean Dague 4ea5d02a70 Improved timestamp parsing
Use dateutil to accept be more flexible in parsing timestamps. A recent
upgrade to ElasticSearch changed the timestamp format to use '+00:00' to
note the timezone instead of 'Z'

Co-Authored-By: Joe Gordon <joe.gordon0@gmail.com>
Change-Id: I11f441ba3bf7ba46c55921352fcc87eb5d1ce3ae
2014-02-20 20:39:41 -05:00

244 lines
7.4 KiB
Python
Executable File

#!/usr/bin/env python
# Copyright 2014 Samsung Electronics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import argparse
import collections
import datetime
import operator
import re
import dateutil.parser as dp
import jinja2
import elastic_recheck.elasticRecheck as er
import elastic_recheck.results as er_results
def get_options():
parser = argparse.ArgumentParser(
description='''Build the list of all uncategorized test runs.
Note: This will take a few minutes to run.''')
parser.add_argument('--dir', '-d', help="Queries Directory",
default="queries")
parser.add_argument('-t', '--templatedir', help="Template Directory")
parser.add_argument('-o', '--output', help="Output File")
return parser.parse_args()
def setup_template_engine(directory):
path = ["web/share/templates"]
if directory:
path.append(directory)
loader = jinja2.FileSystemLoader(path)
env = jinja2.Environment(loader=loader)
return env.get_template("uncategorized.html")
def all_fails(classifier):
"""Find all the the fails in the integrated gate.
This attempts to find all the build jobs in the integrated gate
so we can figure out how good we are doing on total classification.
"""
all_fails = {}
query = ('filename:"console.html" '
'AND message:"Finished: FAILURE" '
'AND build_queue:"gate"')
results = classifier.hits_by_query(query, size=30000)
facets = er_results.FacetSet()
facets.detect_facets(results, ["build_uuid"])
for build in facets:
for result in facets[build]:
# not perfect, but basically an attempt to show the integrated
# gate. Would be nice if there was a zuul attr for this in es.
if re.search("(^openstack/|devstack|grenade)", result.project):
name = result.build_name
timestamp = dp.parse(result.timestamp)
log = result.log_url.split("console.html")[0]
all_fails["%s.%s" % (build, name)] = {
'log': log,
'timestamp': timestamp
}
return all_fails
def num_fails_per_build_name(all_jobs):
counts = collections.defaultdict(int)
for f in all_jobs:
build, job = f.split('.', 1)
counts[job] += 1
return counts
def classifying_rate(fails, data, engine):
"""Builds and prints the classification rate.
It's important to know how good a job we are doing, so this
tool runs through all the failures we've got and builds the
classification rate. For every failure in the gate queue did
we find a match for it.
"""
found_fails = {k: False for (k, v) in fails.iteritems()}
for bugnum in data:
bug = data[bugnum]
for job in bug['failed_jobs']:
found_fails[job] = True
bad_jobs = collections.defaultdict(int)
total_job_failures = collections.defaultdict(int)
bad_job_urls = collections.defaultdict(list)
count = 0
total = 0
for f in fails:
total += 1
build, job = f.split('.', 1)
total_job_failures[job] += 1
if found_fails[f] is True:
count += 1
else:
bad_jobs[job] += 1
bad_job_urls[job].append(fails[f])
for job in bad_job_urls:
# sort by timestamp.
bad_job_urls[job] = sorted(bad_job_urls[job],
key=lambda v: v['timestamp'], reverse=True)
# Convert timestamp into string
for url in bad_job_urls[job]:
url['timestamp'] = url['timestamp'].strftime(
"%Y-%m-%dT%H:%M")
classifying_rate = collections.defaultdict(int)
classifying_rate['overall'] = "%.1f" % (
(float(count) / float(total)) * 100.0)
for job in bad_jobs:
if bad_jobs[job] == 0 and total_job_failures[job] == 0:
classifying_rate[job] = 0
else:
classifying_rate[job] = "%.1f" % (
100.0 -
(float(bad_jobs[job]) / float(total_job_failures[job]))
* 100.0)
sort = sorted(
bad_jobs.iteritems(),
key=operator.itemgetter(1),
reverse=True)
tvars = {
"rate": classifying_rate,
"count": count,
"total": total,
"uncounted": total - count,
"jobs": sort,
"total_job_failures": total_job_failures,
"urls": bad_job_urls,
"generated_at": datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M")
}
return engine.render(tvars)
def _status_count(results):
counts = {}
facets = er_results.FacetSet()
facets.detect_facets(
results,
["build_status", "build_uuid"])
for key in facets:
counts[key] = len(facets[key])
return counts
def _failure_count(hits):
if "FAILURE" in hits:
return hits["FAILURE"]
else:
return 0
def _failed_jobs(results):
failed_jobs = []
facets = er_results.FacetSet()
facets.detect_facets(
results,
["build_status", "build_uuid"])
if "FAILURE" in facets:
for build in facets["FAILURE"]:
for result in facets["FAILURE"][build]:
failed_jobs.append("%s.%s" % (build, result.build_name))
return failed_jobs
def _count_fails_per_build_name(hits):
facets = er_results.FacetSet()
counts = collections.defaultdict(int)
facets.detect_facets(
hits,
["build_status", "build_name", "build_uuid"])
if "FAILURE" in facets:
for build_name in facets["FAILURE"]:
counts[build_name] += 1
return counts
def _failure_percentage(hits, fails):
total_fails_per_build_name = num_fails_per_build_name(fails)
fails_per_build_name = _count_fails_per_build_name(hits)
per = {}
for build in fails_per_build_name:
this_job = fails_per_build_name[build]
if build in total_fails_per_build_name:
total = total_fails_per_build_name[build]
per[build] = (float(this_job) / float(total)) * 100.0
return per
def collect_metrics(classifier, fails):
data = {}
for q in classifier.queries:
results = classifier.hits_by_query(q['query'], size=30000)
hits = _status_count(results)
data[q['bug']] = {
'fails': _failure_count(hits),
'hits': hits,
'percentages': _failure_percentage(results, fails),
'query': q['query'],
'failed_jobs': _failed_jobs(results)
}
return data
def main():
opts = get_options()
classifier = er.Classifier(opts.dir)
fails = all_fails(classifier)
data = collect_metrics(classifier, fails)
engine = setup_template_engine(opts.templatedir)
html = classifying_rate(fails, data, engine)
if opts.output:
with open(opts.output, "w") as f:
f.write(html)
else:
print html
if __name__ == "__main__":
main()