elastic-recheck/elastic_recheck/cmd/graph.py
Sean Dague 11cc86b5c6 put the fails24 in the right place
Change-Id: I8669320f978af8cbb1661601838997e442c4f87a
2014-01-22 08:52:41 -05:00

120 lines
4.0 KiB
Python
Executable File

#!/usr/bin/env python
# Copyright 2013 OpenStack Foundation
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import argparse
import base64
from datetime import datetime
import json
import os
from launchpadlib import launchpad
import elastic_recheck.elasticRecheck as er
from elastic_recheck import results as er_results
STEP = 3600000
LPCACHEDIR = os.path.expanduser('~/.launchpadlib/cache')
def get_launchpad_bug(bug):
lp = launchpad.Launchpad.login_anonymously('grabbing bugs',
'production',
LPCACHEDIR)
lp_bug = lp.bugs[bug]
bugdata = {'name': lp_bug.title}
projects = ", ".join(map(lambda x: "(%s - %s)" %
(x.bug_target_name, x.status),
lp_bug.bug_tasks))
bugdata['affects'] = projects
return bugdata
def main():
parser = argparse.ArgumentParser(description='Generate data for graphs.')
parser.add_argument(dest='queries',
help='path to query file')
parser.add_argument('-o', dest='output',
help='output filename')
args = parser.parse_args()
classifier = er.Classifier(args.queries)
buglist = []
epoch = datetime.utcfromtimestamp(0)
ts = datetime.now()
ts = datetime(ts.year, ts.month, ts.day, ts.hour)
# ms since epoch
now = int(((ts - epoch).total_seconds()) * 1000)
start = now - (14 * 24 * STEP)
for query in classifier.queries:
urlq = dict(search=query['query'],
fields=[],
offset=0,
timeframe="604800",
graphmode="count")
logstash_query = base64.urlsafe_b64encode(json.dumps(urlq))
bug_data = get_launchpad_bug(query['bug'])
bug = dict(number=query['bug'],
query=query['query'],
logstash_query=logstash_query,
bug_data=bug_data,
fails=0,
fails24=0,
data=[])
buglist.append(bug)
results = classifier.hits_by_query(query['query'], size=3000)
facets_for_fail = er_results.FacetSet()
facets_for_fail.detect_facets(results,
["build_status", "build_uuid"])
if "FAILURE" in facets_for_fail:
bug['fails'] = len(facets_for_fail['FAILURE'])
facets = er_results.FacetSet()
facets.detect_facets(results,
["build_status", "timestamp", "build_uuid"])
for status in facets.keys():
data = []
for ts in range(start, now, STEP):
if ts in facets[status]:
fails = len(facets[status][ts])
data.append([ts, fails])
# get the last 24 hr count as well, can't wait to have
# the pandas code and able to do it that way
if ts > (now - (24 * STEP)):
bug['fails24'] += fails
else:
data.append([ts, 0])
bug["data"].append(dict(label=status, data=data))
# the sort order is a little odd, but basically sort by failures in
# the last 24 hours, then with all failures for ones that we haven't
# seen in the last 24 hours.
buglist = sorted(buglist,
key=lambda bug: -(bug['fails24'] * 100000 + bug['fails']))
out = open(args.output, 'w')
out.write(json.dumps(buglist))
out.close()
if __name__ == "__main__":
main()