96961070ee
Modify the metadata erasing call chain to retrieve a list of devices that includes partitions in addition to disks so it can erase metadata from all of them, otherwise incidentally recreating disk partitions causes the Linux kernel to discover and automatically recreate some types of storage entities (eg LVM PVs, VGs, & LVs, RAID members & devices). Change-Id: If8f47a083966051856439e3291a6872929b93e3b Story: #2003673 Task: #26192
1325 lines
52 KiB
Python
1325 lines
52 KiB
Python
# Copyright 2013 Rackspace, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import abc
|
|
import binascii
|
|
import functools
|
|
import json
|
|
from multiprocessing.pool import ThreadPool
|
|
import os
|
|
import shlex
|
|
import time
|
|
|
|
from ironic_lib import disk_utils
|
|
from ironic_lib import utils as il_utils
|
|
import netaddr
|
|
from oslo_concurrency import processutils
|
|
from oslo_config import cfg
|
|
from oslo_log import log
|
|
import pint
|
|
import psutil
|
|
import pyudev
|
|
import six
|
|
import stevedore
|
|
|
|
from ironic_python_agent import encoding
|
|
from ironic_python_agent import errors
|
|
from ironic_python_agent import netutils
|
|
from ironic_python_agent import utils
|
|
|
|
_global_managers = None
|
|
LOG = log.getLogger()
|
|
CONF = cfg.CONF
|
|
|
|
WARN_BIOSDEVNAME_NOT_FOUND = False
|
|
|
|
UNIT_CONVERTER = pint.UnitRegistry(filename=None)
|
|
UNIT_CONVERTER.define('bytes = []')
|
|
UNIT_CONVERTER.define('MB = 1048576 bytes')
|
|
|
|
NODE = None
|
|
|
|
|
|
def _get_device_info(dev, devclass, field):
|
|
"""Get the device info according to device class and field."""
|
|
try:
|
|
devname = os.path.basename(dev)
|
|
with open('/sys/class/%s/%s/device/%s' % (devclass, devname, field),
|
|
'r') as f:
|
|
return f.read().strip()
|
|
except IOError:
|
|
LOG.warning(
|
|
"Can't find field {} for device {} in device class {}".format(
|
|
field, dev, devclass))
|
|
|
|
|
|
def _get_system_lshw_dict():
|
|
"""Get a dict representation of the system from lshw
|
|
|
|
Retrieves a json representation of the system from lshw and converts
|
|
it to a python dict
|
|
|
|
:return: A python dict from the lshw json output
|
|
"""
|
|
out, _e = utils.execute('lshw', '-quiet', '-json')
|
|
return json.loads(out)
|
|
|
|
|
|
def _udev_settle():
|
|
"""Wait for the udev event queue to settle.
|
|
|
|
Wait for the udev event queue to settle to make sure all devices
|
|
are detected once the machine boots up.
|
|
|
|
"""
|
|
try:
|
|
utils.execute('udevadm', 'settle')
|
|
except processutils.ProcessExecutionError as e:
|
|
LOG.warning('Something went wrong when waiting for udev '
|
|
'to settle. Error: %s', e)
|
|
return
|
|
|
|
|
|
def _check_for_iscsi():
|
|
"""Connect iSCSI shared connected via iBFT or OF.
|
|
|
|
iscsistart -f will print the iBFT or OF info.
|
|
In case such connection exists, we would like to issue
|
|
iscsistart -b to create a session to the target.
|
|
- If no connection is detected we simply return.
|
|
"""
|
|
try:
|
|
utils.execute('iscsistart', '-f')
|
|
except (processutils.ProcessExecutionError, EnvironmentError) as e:
|
|
LOG.debug("No iscsi connection detected. Skipping iscsi. "
|
|
"Error: %s", e)
|
|
return
|
|
try:
|
|
utils.execute('iscsistart', '-b')
|
|
except processutils.ProcessExecutionError as e:
|
|
LOG.warning("Something went wrong executing 'iscsistart -b' "
|
|
"Error: %s", e)
|
|
|
|
|
|
def list_all_block_devices(block_type='disk',
|
|
ignore_raid=False):
|
|
"""List all physical block devices
|
|
|
|
The switches we use for lsblk: P for KEY="value" output, b for size output
|
|
in bytes, i to ensure ascii characters only, and o to specify the
|
|
fields/columns we need.
|
|
|
|
Broken out as its own function to facilitate custom hardware managers that
|
|
don't need to subclass GenericHardwareManager.
|
|
|
|
:param block_type: Type of block device to find
|
|
:param ignore_raid: Ignore auto-identified raid devices, example: md0
|
|
Defaults to false as these are generally disk
|
|
devices and should be treated as such if encountered.
|
|
:return: A list of BlockDevices
|
|
"""
|
|
|
|
def _is_known_device(existing, new_device_name):
|
|
"""Return true if device name is already known."""
|
|
for known_dev in existing:
|
|
if os.path.join('/dev', new_device_name) == known_dev.name:
|
|
return True
|
|
return False
|
|
|
|
_udev_settle()
|
|
|
|
# map device names to /dev/disk/by-path symbolic links that points to it
|
|
|
|
by_path_mapping = {}
|
|
|
|
disk_by_path_dir = '/dev/disk/by-path'
|
|
|
|
try:
|
|
paths = os.listdir(disk_by_path_dir)
|
|
|
|
for path in paths:
|
|
path = os.path.join(disk_by_path_dir, path)
|
|
# Turn possibly relative symbolic link into absolute
|
|
devname = os.path.join(disk_by_path_dir, os.readlink(path))
|
|
devname = os.path.abspath(devname)
|
|
by_path_mapping[devname] = path
|
|
|
|
except OSError as e:
|
|
# NOTE(TheJulia): This is for multipath detection, and will raise
|
|
# some warning logs with unrelated tests.
|
|
LOG.warning("Path %(path)s is inaccessible, /dev/disk/by-path/* "
|
|
"version of block device name is unavailable "
|
|
"Cause: %(error)s", {'path': disk_by_path_dir, 'error': e})
|
|
|
|
columns = ['KNAME', 'MODEL', 'SIZE', 'ROTA', 'TYPE']
|
|
report = utils.execute('lsblk', '-Pbi', '-o{}'.format(','.join(columns)),
|
|
check_exit_code=[0])[0]
|
|
lines = report.splitlines()
|
|
context = pyudev.Context()
|
|
|
|
devices = []
|
|
for line in lines:
|
|
device = {}
|
|
# Split into KEY=VAL pairs
|
|
vals = shlex.split(line)
|
|
for key, val in (v.split('=', 1) for v in vals):
|
|
device[key] = val.strip()
|
|
# Ignore block types not specified
|
|
devtype = device.get('TYPE')
|
|
|
|
# We already have devices, we should ensure we don't store duplicates.
|
|
if _is_known_device(devices, device.get('KNAME')):
|
|
continue
|
|
|
|
# Search for raid in the reply type, as RAID is a
|
|
# disk device, and we should honor it if is present.
|
|
# Other possible type values, which we skip recording:
|
|
# lvm, part, rom, loop
|
|
if devtype != block_type:
|
|
if devtype is not None and 'raid' in devtype and not ignore_raid:
|
|
LOG.debug(
|
|
"TYPE detected to contain 'raid', signifying a RAID "
|
|
"volume. Found: {!r}".format(line))
|
|
else:
|
|
LOG.debug(
|
|
"TYPE did not match. Wanted: {!r} but found: {!r}".format(
|
|
block_type, line))
|
|
continue
|
|
|
|
# Ensure all required columns are at least present, even if blank
|
|
missing = set(columns) - set(device)
|
|
if missing:
|
|
raise errors.BlockDeviceError(
|
|
'%s must be returned by lsblk.' % ', '.join(sorted(missing)))
|
|
|
|
name = os.path.join('/dev', device['KNAME'])
|
|
|
|
try:
|
|
udev = pyudev.Device.from_device_file(context, name)
|
|
# pyudev started raising another error in 0.18
|
|
except (ValueError, EnvironmentError, pyudev.DeviceNotFoundError) as e:
|
|
LOG.warning("Device %(dev)s is inaccessible, skipping... "
|
|
"Error: %(error)s", {'dev': name, 'error': e})
|
|
extra = {}
|
|
else:
|
|
# TODO(lucasagomes): Since lsblk only supports
|
|
# returning the short serial we are using
|
|
# ID_SERIAL_SHORT here to keep compatibility with the
|
|
# bash deploy ramdisk
|
|
extra = {key: udev.get('ID_%s' % udev_key) for key, udev_key in
|
|
[('wwn', 'WWN'), ('serial', 'SERIAL_SHORT'),
|
|
('wwn_with_extension', 'WWN_WITH_EXTENSION'),
|
|
('wwn_vendor_extension', 'WWN_VENDOR_EXTENSION')]}
|
|
|
|
# NOTE(lucasagomes): Newer versions of the lsblk tool supports
|
|
# HCTL as a parameter but let's get it from sysfs to avoid breaking
|
|
# old distros.
|
|
try:
|
|
extra['hctl'] = os.listdir(
|
|
'/sys/block/%s/device/scsi_device' % device['KNAME'])[0]
|
|
except (OSError, IndexError):
|
|
LOG.warning('Could not find the SCSI address (HCTL) for '
|
|
'device %s. Skipping', name)
|
|
|
|
# Not all /dev entries are pointed to from /dev/disk/by-path
|
|
by_path_name = by_path_mapping.get(name)
|
|
|
|
devices.append(BlockDevice(name=name,
|
|
model=device['MODEL'],
|
|
size=int(device['SIZE']),
|
|
rotational=bool(int(device['ROTA'])),
|
|
vendor=_get_device_info(device['KNAME'],
|
|
'block', 'vendor'),
|
|
by_path=by_path_name,
|
|
**extra))
|
|
return devices
|
|
|
|
|
|
class HardwareSupport(object):
|
|
"""Example priorities for hardware managers.
|
|
|
|
Priorities for HardwareManagers are integers, where largest means most
|
|
specific and smallest means most generic. These values are guidelines
|
|
that suggest values that might be returned by calls to
|
|
`evaluate_hardware_support()`. No HardwareManager in mainline IPA will
|
|
ever return a value greater than MAINLINE. Third party hardware managers
|
|
should feel free to return values of SERVICE_PROVIDER or greater to
|
|
distinguish between additional levels of hardware support.
|
|
"""
|
|
NONE = 0
|
|
GENERIC = 1
|
|
MAINLINE = 2
|
|
SERVICE_PROVIDER = 3
|
|
|
|
|
|
class HardwareType(object):
|
|
MAC_ADDRESS = 'mac_address'
|
|
|
|
|
|
class BlockDevice(encoding.SerializableComparable):
|
|
serializable_fields = ('name', 'model', 'size', 'rotational',
|
|
'wwn', 'serial', 'vendor', 'wwn_with_extension',
|
|
'wwn_vendor_extension', 'hctl', 'by_path')
|
|
|
|
def __init__(self, name, model, size, rotational, wwn=None, serial=None,
|
|
vendor=None, wwn_with_extension=None,
|
|
wwn_vendor_extension=None, hctl=None, by_path=None):
|
|
self.name = name
|
|
self.model = model
|
|
self.size = size
|
|
self.rotational = rotational
|
|
self.wwn = wwn
|
|
self.serial = serial
|
|
self.vendor = vendor
|
|
self.wwn_with_extension = wwn_with_extension
|
|
self.wwn_vendor_extension = wwn_vendor_extension
|
|
self.hctl = hctl
|
|
self.by_path = by_path
|
|
|
|
|
|
class NetworkInterface(encoding.SerializableComparable):
|
|
serializable_fields = ('name', 'mac_address', 'ipv4_address',
|
|
'ipv6_address', 'has_carrier', 'lldp',
|
|
'vendor', 'product', 'client_id',
|
|
'biosdevname')
|
|
|
|
def __init__(self, name, mac_addr, ipv4_address=None, ipv6_address=None,
|
|
has_carrier=True, lldp=None, vendor=None, product=None,
|
|
client_id=None, biosdevname=None):
|
|
self.name = name
|
|
self.mac_address = mac_addr
|
|
self.ipv4_address = ipv4_address
|
|
self.ipv6_address = ipv6_address
|
|
self.has_carrier = has_carrier
|
|
self.lldp = lldp
|
|
self.vendor = vendor
|
|
self.product = product
|
|
self.biosdevname = biosdevname
|
|
# client_id is used for InfiniBand only. we calculate the DHCP
|
|
# client identifier Option to allow DHCP to work over InfiniBand.
|
|
# see https://tools.ietf.org/html/rfc4390
|
|
self.client_id = client_id
|
|
|
|
|
|
class CPU(encoding.SerializableComparable):
|
|
serializable_fields = ('model_name', 'frequency', 'count', 'architecture',
|
|
'flags')
|
|
|
|
def __init__(self, model_name, frequency, count, architecture,
|
|
flags=None):
|
|
self.model_name = model_name
|
|
self.frequency = frequency
|
|
self.count = count
|
|
self.architecture = architecture
|
|
self.flags = flags or []
|
|
|
|
|
|
class Memory(encoding.SerializableComparable):
|
|
serializable_fields = ('total', 'physical_mb')
|
|
# physical = total + kernel binary + reserved space
|
|
|
|
def __init__(self, total, physical_mb=None):
|
|
self.total = total
|
|
self.physical_mb = physical_mb
|
|
|
|
|
|
class SystemVendorInfo(encoding.SerializableComparable):
|
|
serializable_fields = ('product_name', 'serial_number', 'manufacturer')
|
|
|
|
def __init__(self, product_name, serial_number, manufacturer):
|
|
self.product_name = product_name
|
|
self.serial_number = serial_number
|
|
self.manufacturer = manufacturer
|
|
|
|
|
|
class BootInfo(encoding.SerializableComparable):
|
|
serializable_fields = ('current_boot_mode', 'pxe_interface')
|
|
|
|
def __init__(self, current_boot_mode, pxe_interface=None):
|
|
self.current_boot_mode = current_boot_mode
|
|
self.pxe_interface = pxe_interface
|
|
|
|
|
|
@six.add_metaclass(abc.ABCMeta)
|
|
class HardwareManager(object):
|
|
@abc.abstractmethod
|
|
def evaluate_hardware_support(self):
|
|
pass
|
|
|
|
def list_network_interfaces(self):
|
|
raise errors.IncompatibleHardwareMethodError
|
|
|
|
def get_cpus(self):
|
|
raise errors.IncompatibleHardwareMethodError
|
|
|
|
def list_block_devices(self, include_partitions=False):
|
|
"""List physical block devices
|
|
|
|
:param include_partitions: If to include partitions
|
|
:return: A list of BlockDevices
|
|
"""
|
|
raise errors.IncompatibleHardwareMethodError
|
|
|
|
def get_memory(self):
|
|
raise errors.IncompatibleHardwareMethodError
|
|
|
|
def get_os_install_device(self):
|
|
raise errors.IncompatibleHardwareMethodError
|
|
|
|
def get_bmc_address(self):
|
|
raise errors.IncompatibleHardwareMethodError()
|
|
|
|
def get_boot_info(self):
|
|
raise errors.IncompatibleHardwareMethodError()
|
|
|
|
def get_interface_info(self, interface_name):
|
|
raise errors.IncompatibleHardwareMethodError()
|
|
|
|
def erase_block_device(self, node, block_device):
|
|
"""Attempt to erase a block device.
|
|
|
|
Implementations should detect the type of device and erase it in the
|
|
most appropriate way possible. Generic implementations should support
|
|
common erase mechanisms such as ATA secure erase, or multi-pass random
|
|
writes. Operators with more specific needs should override this method
|
|
in order to detect and handle "interesting" cases, or delegate to the
|
|
parent class to handle generic cases.
|
|
|
|
For example: operators running ACME MagicStore (TM) cards alongside
|
|
standard SSDs might check whether the device is a MagicStore and use a
|
|
proprietary tool to erase that, otherwise call this method on their
|
|
parent class. Upstream submissions of common functionality are
|
|
encouraged.
|
|
|
|
This interface could be called concurrently to speed up erasure, as
|
|
such, it should be implemented in a thread-safe way.
|
|
|
|
:param node: Ironic node object
|
|
:param block_device: a BlockDevice indicating a device to be erased.
|
|
:raises IncompatibleHardwareMethodError: when there is no known way to
|
|
erase the block device
|
|
:raises BlockDeviceEraseError: when there is an error erasing the
|
|
block device
|
|
"""
|
|
raise errors.IncompatibleHardwareMethodError
|
|
|
|
def erase_devices(self, node, ports):
|
|
"""Erase any device that holds user data.
|
|
|
|
By default this will attempt to erase block devices. This method can be
|
|
overridden in an implementation-specific hardware manager in order to
|
|
erase additional hardware, although backwards-compatible upstream
|
|
submissions are encouraged.
|
|
|
|
:param node: Ironic node object
|
|
:param ports: list of Ironic port objects
|
|
:return: a dictionary in the form {device.name: erasure output}
|
|
"""
|
|
erase_results = {}
|
|
block_devices = self.list_block_devices()
|
|
if not len(block_devices):
|
|
return {}
|
|
|
|
info = node.get('driver_internal_info', {})
|
|
max_pool_size = info.get('disk_erasure_concurrency', 1)
|
|
|
|
thread_pool = ThreadPool(min(max_pool_size, len(block_devices)))
|
|
for block_device in block_devices:
|
|
params = {'node': node, 'block_device': block_device}
|
|
erase_results[block_device.name] = thread_pool.apply_async(
|
|
dispatch_to_managers, ('erase_block_device',), params)
|
|
thread_pool.close()
|
|
thread_pool.join()
|
|
|
|
for device_name, result in erase_results.items():
|
|
erase_results[device_name] = result.get()
|
|
|
|
return erase_results
|
|
|
|
def wait_for_disks(self):
|
|
"""Wait for the root disk to appear.
|
|
|
|
Wait for at least one suitable disk to show up or a specific disk
|
|
if any device hint is specified. Otherwise neither inspection
|
|
not deployment have any chances to succeed.
|
|
|
|
"""
|
|
if not CONF.disk_wait_attempts:
|
|
return
|
|
|
|
max_waits = CONF.disk_wait_attempts - 1
|
|
for attempt in range(CONF.disk_wait_attempts):
|
|
try:
|
|
self.get_os_install_device()
|
|
except errors.DeviceNotFound:
|
|
LOG.debug('Still waiting for the root device to appear, '
|
|
'attempt %d of %d', attempt + 1,
|
|
CONF.disk_wait_attempts)
|
|
|
|
if attempt < max_waits:
|
|
time.sleep(CONF.disk_wait_delay)
|
|
else:
|
|
break
|
|
else:
|
|
if max_waits:
|
|
LOG.warning('The root device was not detected in %d seconds',
|
|
CONF.disk_wait_delay * max_waits)
|
|
else:
|
|
LOG.warning('The root device was not detected')
|
|
|
|
def list_hardware_info(self):
|
|
"""Return full hardware inventory as a serializable dict.
|
|
|
|
This inventory is sent to Ironic on lookup and to Inspector on
|
|
inspection.
|
|
|
|
:return: a dictionary representing inventory
|
|
"""
|
|
# NOTE(dtantsur): don't forget to update docs when extending inventory
|
|
hardware_info = {}
|
|
hardware_info['interfaces'] = self.list_network_interfaces()
|
|
hardware_info['cpu'] = self.get_cpus()
|
|
hardware_info['disks'] = self.list_block_devices()
|
|
hardware_info['memory'] = self.get_memory()
|
|
hardware_info['bmc_address'] = self.get_bmc_address()
|
|
hardware_info['system_vendor'] = self.get_system_vendor_info()
|
|
hardware_info['boot'] = self.get_boot_info()
|
|
return hardware_info
|
|
|
|
def get_clean_steps(self, node, ports):
|
|
"""Get a list of clean steps with priority.
|
|
|
|
Returns a list of steps. Each step is represented by a dict::
|
|
|
|
{
|
|
'step': the HardwareManager function to call.
|
|
'priority': the order steps will be run in. Ironic will sort all
|
|
the clean steps from all the drivers, with the largest
|
|
priority step being run first. If priority is set to 0,
|
|
the step will not be run during cleaning, but may be
|
|
run during zapping.
|
|
'reboot_requested': Whether the agent should request Ironic reboots
|
|
the node via the power driver after the
|
|
operation completes.
|
|
'abortable': Boolean value. Whether the clean step can be
|
|
stopped by the operator or not. Some clean step may
|
|
cause non-reversible damage to a machine if interrupted
|
|
(i.e firmware update), for such steps this parameter
|
|
should be set to False. If no value is set for this
|
|
parameter, Ironic will consider False (non-abortable).
|
|
}
|
|
|
|
|
|
If multiple hardware managers return the same step name, the following
|
|
logic will be used to determine which manager's step "wins":
|
|
|
|
* Keep the step that belongs to HardwareManager with highest
|
|
HardwareSupport (larger int) value.
|
|
* If equal support level, keep the step with the higher defined
|
|
priority (larger int).
|
|
* If equal support level and priority, keep the step associated
|
|
with the HardwareManager whose name comes earlier in the
|
|
alphabet.
|
|
|
|
The steps will be called using `hardware.dispatch_to_managers` and
|
|
handled by the best suited hardware manager. If you need a step to be
|
|
executed by only your hardware manager, ensure it has a unique step
|
|
name.
|
|
|
|
`node` and `ports` can be used by other hardware managers to further
|
|
determine if a clean step is supported for the node.
|
|
|
|
:param node: Ironic node object
|
|
:param ports: list of Ironic port objects
|
|
:return: a list of cleaning steps, where each step is described as a
|
|
dict as defined above
|
|
|
|
"""
|
|
return []
|
|
|
|
def get_version(self):
|
|
"""Get a name and version for this hardware manager.
|
|
|
|
In order to avoid errors and make agent upgrades painless, cleaning
|
|
will check the version of all hardware managers during get_clean_steps
|
|
at the beginning of cleaning and before executing each step in the
|
|
agent.
|
|
|
|
The agent isn't aware of the steps being taken before or after via
|
|
out of band steps, so it can never know if a new step is safe to run.
|
|
Therefore, we default to restarting the whole process.
|
|
|
|
:returns: a dictionary with two keys: `name` and
|
|
`version`, where `name` is a string identifying the hardware
|
|
manager and `version` is an arbitrary version string. `name` will
|
|
be a class variable called HARDWARE_MANAGER_NAME, or default to
|
|
the class name and `version` will be a class variable called
|
|
HARDWARE_MANAGER_VERSION or default to '1.0'.
|
|
"""
|
|
return {
|
|
'name': getattr(self, 'HARDWARE_MANAGER_NAME',
|
|
type(self).__name__),
|
|
'version': getattr(self, 'HARDWARE_MANAGER_VERSION', '1.0')
|
|
}
|
|
|
|
|
|
class GenericHardwareManager(HardwareManager):
|
|
HARDWARE_MANAGER_NAME = 'generic_hardware_manager'
|
|
# 1.1 - Added new clean step called erase_devices_metadata
|
|
HARDWARE_MANAGER_VERSION = '1.1'
|
|
|
|
def __init__(self):
|
|
self.sys_path = '/sys'
|
|
self.lldp_data = {}
|
|
|
|
def evaluate_hardware_support(self):
|
|
# Do some initialization before we declare ourself ready
|
|
_check_for_iscsi()
|
|
self.wait_for_disks()
|
|
return HardwareSupport.GENERIC
|
|
|
|
def collect_lldp_data(self, interface_names):
|
|
"""Collect and convert LLDP info from the node.
|
|
|
|
In order to process the LLDP information later, the raw data needs to
|
|
be converted for serialization purposes.
|
|
|
|
:param interface_names: list of names of node's interfaces.
|
|
:return: a dict, containing the lldp data from every interface.
|
|
"""
|
|
|
|
interface_names = [name for name in interface_names if name != 'lo']
|
|
lldp_data = {}
|
|
try:
|
|
raw_lldp_data = netutils.get_lldp_info(interface_names)
|
|
except Exception:
|
|
# NOTE(sambetts) The get_lldp_info function will log this exception
|
|
# and we don't invalidate any existing data in the cache if we fail
|
|
# to get data to replace it so just return.
|
|
return lldp_data
|
|
for ifname, tlvs in raw_lldp_data.items():
|
|
# NOTE(sambetts) Convert each type-length-value (TLV) value to hex
|
|
# so that it can be serialised safely
|
|
processed_tlvs = []
|
|
for typ, data in tlvs:
|
|
try:
|
|
processed_tlvs.append((typ,
|
|
binascii.hexlify(data).decode()))
|
|
except (binascii.Error, binascii.Incomplete) as e:
|
|
LOG.warning('An error occurred while processing TLV type '
|
|
'%s for interface %s: %s', (typ, ifname, e))
|
|
lldp_data[ifname] = processed_tlvs
|
|
return lldp_data
|
|
|
|
def _get_lldp_data(self, interface_name):
|
|
if self.lldp_data:
|
|
return self.lldp_data.get(interface_name)
|
|
|
|
def get_interface_info(self, interface_name):
|
|
|
|
mac_addr = netutils.get_mac_addr(interface_name)
|
|
if mac_addr is None:
|
|
raise errors.IncompatibleHardwareMethodError()
|
|
|
|
return NetworkInterface(
|
|
interface_name, mac_addr,
|
|
ipv4_address=self.get_ipv4_addr(interface_name),
|
|
ipv6_address=self.get_ipv6_addr(interface_name),
|
|
has_carrier=netutils.interface_has_carrier(interface_name),
|
|
vendor=_get_device_info(interface_name, 'net', 'vendor'),
|
|
product=_get_device_info(interface_name, 'net', 'device'),
|
|
biosdevname=self.get_bios_given_nic_name(interface_name))
|
|
|
|
def get_ipv4_addr(self, interface_id):
|
|
return netutils.get_ipv4_addr(interface_id)
|
|
|
|
def get_ipv6_addr(self, interface_id):
|
|
"""Get the default IPv6 address assigned to the interface.
|
|
|
|
With different networking environment, the address could be a
|
|
link-local address, ULA or something else.
|
|
"""
|
|
return netutils.get_ipv6_addr(interface_id)
|
|
|
|
def get_bios_given_nic_name(self, interface_name):
|
|
"""Collect the BIOS given NICs name.
|
|
|
|
This function uses the biosdevname utility to collect the BIOS given
|
|
name of network interfaces.
|
|
|
|
The collected data is added to the network interface inventory with an
|
|
extra field named ``biosdevname``.
|
|
|
|
:param interface_name: list of names of node's interfaces.
|
|
:return: the BIOS given NIC name of node's interfaces or default
|
|
as None.
|
|
"""
|
|
global WARN_BIOSDEVNAME_NOT_FOUND
|
|
try:
|
|
stdout, _ = utils.execute('biosdevname', '-i',
|
|
interface_name)
|
|
return stdout.rstrip('\n')
|
|
except OSError:
|
|
if not WARN_BIOSDEVNAME_NOT_FOUND:
|
|
LOG.warning("Executable 'biosdevname' not found")
|
|
WARN_BIOSDEVNAME_NOT_FOUND = True
|
|
except processutils.ProcessExecutionError as e:
|
|
# NOTE(alezil) biosdevname returns 4 if running in a
|
|
# virtual machine.
|
|
if e.exit_code == 4:
|
|
LOG.info('The system is a virtual machine, so biosdevname '
|
|
'utility does not provide names for virtual NICs.')
|
|
else:
|
|
LOG.warning('Biosdevname returned exit code %s', e.exit_code)
|
|
|
|
def _is_device(self, interface_name):
|
|
device_path = '{}/class/net/{}/device'.format(self.sys_path,
|
|
interface_name)
|
|
return os.path.exists(device_path)
|
|
|
|
def list_network_interfaces(self):
|
|
network_interfaces_list = []
|
|
iface_names = os.listdir('{}/class/net'.format(self.sys_path))
|
|
iface_names = [name for name in iface_names if self._is_device(name)]
|
|
|
|
if CONF.collect_lldp:
|
|
self.lldp_data = dispatch_to_managers('collect_lldp_data',
|
|
interface_names=iface_names)
|
|
|
|
for iface_name in iface_names:
|
|
result = dispatch_to_managers(
|
|
'get_interface_info', interface_name=iface_name)
|
|
result.lldp = self._get_lldp_data(iface_name)
|
|
network_interfaces_list.append(result)
|
|
|
|
return network_interfaces_list
|
|
|
|
def get_cpus(self):
|
|
lines = utils.execute('lscpu')[0]
|
|
cpu_info = {k.strip().lower(): v.strip() for k, v in
|
|
(line.split(':', 1)
|
|
for line in lines.split('\n')
|
|
if line.strip())}
|
|
# Current CPU frequency can be different from maximum one on modern
|
|
# processors
|
|
freq = cpu_info.get('cpu max mhz', cpu_info.get('cpu mhz'))
|
|
|
|
flags = []
|
|
out = utils.try_execute('grep', '-Em1', '^flags', '/proc/cpuinfo')
|
|
if out:
|
|
try:
|
|
# Example output (much longer for a real system):
|
|
# flags : fpu vme de pse
|
|
flags = out[0].strip().split(':', 1)[1].strip().split()
|
|
except (IndexError, ValueError):
|
|
LOG.warning('Malformed CPU flags information: %s', out)
|
|
else:
|
|
LOG.warning('Failed to get CPU flags')
|
|
|
|
return CPU(model_name=cpu_info.get('model name'),
|
|
frequency=freq,
|
|
# this includes hyperthreading cores
|
|
count=int(cpu_info.get('cpu(s)')),
|
|
architecture=cpu_info.get('architecture'),
|
|
flags=flags)
|
|
|
|
def get_memory(self):
|
|
# psutil returns a long, so we force it to an int
|
|
try:
|
|
total = int(psutil.virtual_memory().total)
|
|
except Exception:
|
|
# This is explicitly catching all exceptions. We want to catch any
|
|
# situation where a newly upgraded psutil would fail, and instead
|
|
# print an error instead of blowing up the stack on IPA.
|
|
total = None
|
|
LOG.exception(("Cannot fetch total memory size using psutil "
|
|
"version %s"), psutil.version_info[0])
|
|
sys_dict = None
|
|
try:
|
|
sys_dict = _get_system_lshw_dict()
|
|
except (processutils.ProcessExecutionError, OSError, ValueError) as e:
|
|
LOG.warning('Could not get real physical RAM from lshw: %s', e)
|
|
physical = None
|
|
else:
|
|
physical = 0
|
|
# locate memory information in system_dict
|
|
for sys_child in sys_dict['children']:
|
|
if sys_child['id'] == 'core':
|
|
for core_child in sys_child['children']:
|
|
if core_child['id'] == 'memory':
|
|
if core_child.get('size'):
|
|
value = "%(size)s %(units)s" % core_child
|
|
physical += int(UNIT_CONVERTER(value).to(
|
|
'MB').magnitude)
|
|
if not physical:
|
|
LOG.warning('Did not find any physical RAM')
|
|
|
|
return Memory(total=total, physical_mb=physical)
|
|
|
|
def list_block_devices(self, include_partitions=False):
|
|
block_devices = list_all_block_devices()
|
|
if include_partitions:
|
|
block_devices.extend(
|
|
list_all_block_devices(block_type='part',
|
|
ignore_raid=True)
|
|
)
|
|
return block_devices
|
|
|
|
def get_os_install_device(self):
|
|
cached_node = get_cached_node()
|
|
root_device_hints = None
|
|
if cached_node is not None:
|
|
root_device_hints = cached_node['properties'].get('root_device')
|
|
LOG.debug('Looking for a device matching root hints %s',
|
|
root_device_hints)
|
|
|
|
block_devices = self.list_block_devices()
|
|
if not root_device_hints:
|
|
dev_name = utils.guess_root_disk(block_devices).name
|
|
else:
|
|
serialized_devs = [dev.serialize() for dev in block_devices]
|
|
try:
|
|
device = il_utils.match_root_device_hints(serialized_devs,
|
|
root_device_hints)
|
|
except ValueError as e:
|
|
# NOTE(lucasagomes): Just playing on the safe side
|
|
# here, this exception should never be raised because
|
|
# Ironic should validate the root device hints before the
|
|
# deployment starts.
|
|
raise errors.DeviceNotFound(
|
|
'No devices could be found using the root device hints '
|
|
'%(hints)s because they failed to validate. Error: '
|
|
'%(error)s' % {'hints': root_device_hints, 'error': e})
|
|
|
|
if not device:
|
|
raise errors.DeviceNotFound(
|
|
"No suitable device was found for "
|
|
"deployment using these hints %s" % root_device_hints)
|
|
|
|
dev_name = device['name']
|
|
|
|
LOG.info('Picked root device %(dev)s for node %(node)s based on '
|
|
'root device hints %(hints)s',
|
|
{'dev': dev_name, 'hints': root_device_hints,
|
|
'node': cached_node['uuid'] if cached_node else None})
|
|
return dev_name
|
|
|
|
def get_system_vendor_info(self):
|
|
try:
|
|
sys_dict = _get_system_lshw_dict()
|
|
except (processutils.ProcessExecutionError, OSError, ValueError) as e:
|
|
LOG.warning('Could not retrieve vendor info from lshw: %e', e)
|
|
sys_dict = {}
|
|
return SystemVendorInfo(product_name=sys_dict.get('product', ''),
|
|
serial_number=sys_dict.get('serial', ''),
|
|
manufacturer=sys_dict.get('vendor', ''))
|
|
|
|
def get_boot_info(self):
|
|
boot_mode = 'uefi' if os.path.isdir('/sys/firmware/efi') else 'bios'
|
|
LOG.debug('The current boot mode is %s', boot_mode)
|
|
pxe_interface = utils.get_agent_params().get('BOOTIF')
|
|
return BootInfo(current_boot_mode=boot_mode,
|
|
pxe_interface=pxe_interface)
|
|
|
|
def erase_block_device(self, node, block_device):
|
|
|
|
# Check if the block device is virtual media and skip the device.
|
|
if self._is_virtual_media_device(block_device):
|
|
LOG.info("Skipping the erase of virtual media device %s",
|
|
block_device.name)
|
|
return
|
|
info = node.get('driver_internal_info', {})
|
|
# Note(TheJulia) Use try/except to capture and log the failure
|
|
# and then revert to attempting to shred the volume if enabled.
|
|
try:
|
|
execute_secure_erase = info.get(
|
|
'agent_enable_ata_secure_erase', True)
|
|
if execute_secure_erase and self._ata_erase(block_device):
|
|
return
|
|
except errors.BlockDeviceEraseError as e:
|
|
execute_shred = info.get(
|
|
'agent_continue_if_ata_erase_failed', False)
|
|
if execute_shred:
|
|
LOG.warning('Failed to invoke ata_erase, '
|
|
'falling back to shred: %(err)s',
|
|
{'err': e})
|
|
else:
|
|
msg = ('Failed to invoke ata_erase, '
|
|
'fallback to shred is not enabled: %(err)s'
|
|
% {'err': e})
|
|
LOG.error(msg)
|
|
raise errors.IncompatibleHardwareMethodError(msg)
|
|
|
|
if self._shred_block_device(node, block_device):
|
|
return
|
|
|
|
msg = ('Unable to erase block device {}: device is unsupported.'
|
|
).format(block_device.name)
|
|
LOG.error(msg)
|
|
raise errors.IncompatibleHardwareMethodError(msg)
|
|
|
|
def erase_devices_metadata(self, node, ports):
|
|
"""Attempt to erase the disk devices metadata.
|
|
|
|
:param node: Ironic node object
|
|
:param ports: list of Ironic port objects
|
|
:raises BlockDeviceEraseError: when there's an error erasing the
|
|
block device
|
|
"""
|
|
block_devices = self.list_block_devices(include_partitions=True)
|
|
# NOTE(coreywright): Reverse sort by device name so a partition (eg
|
|
# sda1) is processed before it disappears when its associated disk (eg
|
|
# sda) has its partition table erased and the kernel notified.
|
|
block_devices.sort(key=lambda dev: dev.name, reverse=True)
|
|
erase_errors = {}
|
|
for dev in block_devices:
|
|
if self._is_virtual_media_device(dev):
|
|
LOG.info("Skipping the erase of virtual media device %s",
|
|
dev.name)
|
|
continue
|
|
|
|
try:
|
|
disk_utils.destroy_disk_metadata(dev.name, node['uuid'])
|
|
except processutils.ProcessExecutionError as e:
|
|
LOG.error('Failed to erase the metadata on device "%(dev)s". '
|
|
'Error: %(error)s', {'dev': dev.name, 'error': e})
|
|
erase_errors[dev.name] = e
|
|
|
|
if erase_errors:
|
|
excpt_msg = ('Failed to erase the metadata on the device(s): %s' %
|
|
'; '.join(['"%s": %s' % (k, v)
|
|
for k, v in erase_errors.items()]))
|
|
raise errors.BlockDeviceEraseError(excpt_msg)
|
|
|
|
def _shred_block_device(self, node, block_device):
|
|
"""Erase a block device using shred.
|
|
|
|
:param node: Ironic node info.
|
|
:param block_device: a BlockDevice object to be erased
|
|
:returns: True if the erase succeeds, False if it fails for any reason
|
|
"""
|
|
info = node.get('driver_internal_info', {})
|
|
npasses = info.get('agent_erase_devices_iterations', 1)
|
|
args = ('shred', '--force')
|
|
|
|
if info.get('agent_erase_devices_zeroize', True):
|
|
args += ('--zero', )
|
|
|
|
args += ('--verbose', '--iterations', str(npasses), block_device.name)
|
|
|
|
try:
|
|
utils.execute(*args)
|
|
except (processutils.ProcessExecutionError, OSError) as e:
|
|
msg = "Erasing block device %(dev)s failed with error %(err)s"
|
|
LOG.error(msg, {'dev': block_device.name, 'err': e})
|
|
return False
|
|
|
|
return True
|
|
|
|
def _is_virtual_media_device(self, block_device):
|
|
"""Check if the block device corresponds to Virtual Media device.
|
|
|
|
:param block_device: a BlockDevice object
|
|
:returns: True if it's a virtual media device, else False
|
|
"""
|
|
vm_device_label = '/dev/disk/by-label/ir-vfd-dev'
|
|
if os.path.exists(vm_device_label):
|
|
link = os.readlink(vm_device_label)
|
|
device = os.path.normpath(os.path.join(os.path.dirname(
|
|
vm_device_label), link))
|
|
if block_device.name == device:
|
|
return True
|
|
return False
|
|
|
|
def _get_ata_security_lines(self, block_device):
|
|
output = utils.execute('hdparm', '-I', block_device.name)[0]
|
|
|
|
if '\nSecurity: ' not in output:
|
|
return []
|
|
|
|
# Get all lines after the 'Security: ' line
|
|
security_and_beyond = output.split('\nSecurity: \n')[1]
|
|
security_and_beyond_lines = security_and_beyond.split('\n')
|
|
|
|
security_lines = []
|
|
for line in security_and_beyond_lines:
|
|
if line.startswith('\t'):
|
|
security_lines.append(line.strip().replace('\t', ' '))
|
|
else:
|
|
break
|
|
|
|
return security_lines
|
|
|
|
def _smartctl_security_check(self, block_device):
|
|
"""Checks if we can query security via smartctl.
|
|
|
|
:param block_device: A block_device object
|
|
|
|
:returns: True if we can query the block device via ATA
|
|
or the smartctl binary is not present.
|
|
False if we cannot query the device.
|
|
"""
|
|
try:
|
|
# NOTE(TheJulia): smartctl has a concept of drivers being how
|
|
# to query or interpret data from the device. We want to use `ata`
|
|
# instead of `scsi` or `sat` as smartctl will not be able to read
|
|
# a bridged device that it doesn't understand, and accordingly
|
|
# return an error code.
|
|
output = utils.execute('smartctl', '-d', 'ata', block_device.name,
|
|
'-g', 'security',
|
|
check_exit_code=[0, 127])[0]
|
|
if 'Unavailable' in output:
|
|
# Smartctl is reporting it is unavailable, lets return false.
|
|
LOG.debug('Smartctl has reported that security is '
|
|
'unavailable on device %s.', block_device.name)
|
|
return False
|
|
return True
|
|
except processutils.ProcessExecutionError:
|
|
# Things don't look so good....
|
|
LOG.warning('Refusing to permit ATA Secure Erase as direct '
|
|
'ATA commands via the `smartctl` utility with device '
|
|
'%s do not succeed.', block_device.name)
|
|
return False
|
|
except OSError:
|
|
# Processutils can raise OSError if a path is not found,
|
|
# and it is okay that we tollerate that since it was the
|
|
# prior behavior.
|
|
return True
|
|
|
|
def _ata_erase(self, block_device):
|
|
|
|
def __attempt_unlock_drive(block_device, security_lines=None):
|
|
# Attempt to unlock the drive in the event it has already been
|
|
# locked by a previous failed attempt. We try the empty string as
|
|
# versions of hdparm < 9.51, interpreted NULL as the literal
|
|
# string, "NULL", as opposed to the empty string.
|
|
if not security_lines:
|
|
security_lines = self._get_ata_security_lines(block_device)
|
|
unlock_passwords = ['NULL', '']
|
|
for password in unlock_passwords:
|
|
if 'not locked' in security_lines:
|
|
break
|
|
try:
|
|
utils.execute('hdparm', '--user-master', 'u',
|
|
'--security-unlock', password,
|
|
block_device.name)
|
|
except processutils.ProcessExecutionError as e:
|
|
LOG.info('Security unlock failed for device '
|
|
'%(name)s using password "%(password)s": %(err)s',
|
|
{'name': block_device.name,
|
|
'password': password,
|
|
'err': e})
|
|
security_lines = self._get_ata_security_lines(block_device)
|
|
return security_lines
|
|
|
|
security_lines = self._get_ata_security_lines(block_device)
|
|
|
|
# If secure erase isn't supported return False so erase_block_device
|
|
# can try another mechanism. Below here, if secure erase is supported
|
|
# but fails in some way, error out (operators of hardware that supports
|
|
# secure erase presumably expect this to work).
|
|
if (not self._smartctl_security_check(block_device)
|
|
or 'supported' not in security_lines):
|
|
return False
|
|
|
|
# At this point, we could be SEC1,2,4,5,6
|
|
|
|
if 'not frozen' not in security_lines:
|
|
# In SEC2 or 6
|
|
raise errors.BlockDeviceEraseError(
|
|
('Block device {} is frozen and cannot be erased'
|
|
).format(block_device.name))
|
|
|
|
# At this point, we could be in SEC1,4,5
|
|
# Attempt to unlock the drive if it has failed in a prior attempt.
|
|
security_lines = __attempt_unlock_drive(block_device, security_lines)
|
|
|
|
# If the unlock failed we will still be in SEC4, otherwise, we will be
|
|
# in SEC1 or SEC5
|
|
|
|
if 'not locked' not in security_lines:
|
|
# In SEC4
|
|
raise errors.BlockDeviceEraseError(
|
|
('Block device {} already has a security password set'
|
|
).format(block_device.name))
|
|
|
|
# At this point, we could be in SEC1 or 5
|
|
if 'not enabled' in security_lines:
|
|
# SEC1. Try to transition to SEC5 by setting empty user
|
|
# password.
|
|
try:
|
|
utils.execute('hdparm', '--user-master', 'u',
|
|
'--security-set-pass', 'NULL', block_device.name)
|
|
except processutils.ProcessExecutionError as e:
|
|
error_msg = ('Security password set failed for device '
|
|
'{name}: {err}'
|
|
).format(name=block_device.name, err=e)
|
|
raise errors.BlockDeviceEraseError(error_msg)
|
|
|
|
# Use the 'enhanced' security erase option if it's supported.
|
|
erase_option = '--security-erase'
|
|
if 'not supported: enhanced erase' not in security_lines:
|
|
erase_option += '-enhanced'
|
|
|
|
try:
|
|
utils.execute('hdparm', '--user-master', 'u', erase_option,
|
|
'NULL', block_device.name)
|
|
except processutils.ProcessExecutionError as e:
|
|
# NOTE(TheJulia): Attempt unlock to allow fallback to shred
|
|
# to occur, otherwise shred will fail as well, as the security
|
|
# mode will prevent IO operations to the disk.
|
|
__attempt_unlock_drive(block_device)
|
|
raise errors.BlockDeviceEraseError('Erase failed for device '
|
|
'%(name)s: %(err)s' %
|
|
{'name': block_device.name,
|
|
'err': e})
|
|
|
|
# Verify that security is now 'not enabled'
|
|
security_lines = self._get_ata_security_lines(block_device)
|
|
if 'not enabled' not in security_lines:
|
|
# Not SEC1 - fail
|
|
raise errors.BlockDeviceEraseError(
|
|
('An unknown error occurred erasing block device {}'
|
|
).format(block_device.name))
|
|
|
|
# In SEC1 security state
|
|
return True
|
|
|
|
def get_bmc_address(self):
|
|
"""Attempt to detect BMC IP address
|
|
|
|
:return: IP address of lan channel or 0.0.0.0 in case none of them is
|
|
configured properly
|
|
"""
|
|
# These modules are rarely loaded automatically
|
|
utils.try_execute('modprobe', 'ipmi_msghandler')
|
|
utils.try_execute('modprobe', 'ipmi_devintf')
|
|
utils.try_execute('modprobe', 'ipmi_si')
|
|
|
|
try:
|
|
# From all the channels 0-15, only 1-7 can be assigned to different
|
|
# types of communication media and protocols and effectively used
|
|
for channel in range(1, 8):
|
|
out, e = utils.execute(
|
|
"ipmitool lan print {} | awk '/IP Address[ \\t]*:/"
|
|
" {{print $4}}'".format(channel), shell=True)
|
|
if e.startswith("Invalid channel"):
|
|
continue
|
|
out = out.strip()
|
|
|
|
try:
|
|
netaddr.IPAddress(out)
|
|
except netaddr.AddrFormatError:
|
|
LOG.warning('Invalid IP address: %s', out)
|
|
continue
|
|
|
|
# In case we get 0.0.0.0 on a valid channel, we need to keep
|
|
# querying
|
|
if out != '0.0.0.0':
|
|
return out
|
|
|
|
except (processutils.ProcessExecutionError, OSError) as e:
|
|
# Not error, because it's normal in virtual environment
|
|
LOG.warning("Cannot get BMC address: %s", e)
|
|
return
|
|
|
|
return '0.0.0.0'
|
|
|
|
def get_clean_steps(self, node, ports):
|
|
return [
|
|
{
|
|
'step': 'erase_devices',
|
|
'priority': 10,
|
|
'interface': 'deploy',
|
|
'reboot_requested': False,
|
|
'abortable': True
|
|
},
|
|
{
|
|
'step': 'erase_devices_metadata',
|
|
'priority': 99,
|
|
'interface': 'deploy',
|
|
'reboot_requested': False,
|
|
'abortable': True
|
|
}
|
|
]
|
|
|
|
|
|
def _compare_extensions(ext1, ext2):
|
|
mgr1 = ext1.obj
|
|
mgr2 = ext2.obj
|
|
return mgr2.evaluate_hardware_support() - mgr1.evaluate_hardware_support()
|
|
|
|
|
|
def _get_managers():
|
|
"""Get a list of hardware managers in priority order.
|
|
|
|
Use stevedore to find all eligible hardware managers, sort them based on
|
|
self-reported (via evaluate_hardware_support()) priorities, and return them
|
|
in a list. The resulting list is cached in _global_managers.
|
|
|
|
:returns: Priority-sorted list of hardware managers
|
|
:raises HardwareManagerNotFound: if no valid hardware managers found
|
|
"""
|
|
global _global_managers
|
|
|
|
if not _global_managers:
|
|
extension_manager = stevedore.ExtensionManager(
|
|
namespace='ironic_python_agent.hardware_managers',
|
|
invoke_on_load=True)
|
|
|
|
# There will always be at least one extension available (the
|
|
# GenericHardwareManager).
|
|
if six.PY2:
|
|
extensions = sorted(extension_manager, _compare_extensions)
|
|
else:
|
|
extensions = sorted(extension_manager,
|
|
key=functools.cmp_to_key(_compare_extensions))
|
|
|
|
preferred_managers = []
|
|
|
|
for extension in extensions:
|
|
if extension.obj.evaluate_hardware_support() > 0:
|
|
preferred_managers.append(extension.obj)
|
|
LOG.info('Hardware manager found: {}'.format(
|
|
extension.entry_point_target))
|
|
|
|
if not preferred_managers:
|
|
raise errors.HardwareManagerNotFound
|
|
|
|
_global_managers = preferred_managers
|
|
|
|
return _global_managers
|
|
|
|
|
|
def dispatch_to_all_managers(method, *args, **kwargs):
|
|
"""Dispatch a method to all hardware managers.
|
|
|
|
Dispatches the given method in priority order as sorted by
|
|
`_get_managers`. If the method doesn't exist or raises
|
|
IncompatibleHardwareMethodError, it continues to the next hardware manager.
|
|
All managers that have hardware support for this node will be called,
|
|
and their responses will be added to a dictionary of the form
|
|
{HardwareManagerClassName: response}.
|
|
|
|
:param method: hardware manager method to dispatch
|
|
:param *args: arguments to dispatched method
|
|
:param **kwargs: keyword arguments to dispatched method
|
|
:raises errors.HardwareManagerMethodNotFound: if all managers raise
|
|
IncompatibleHardwareMethodError.
|
|
:returns: a dictionary with keys for each hardware manager that returns
|
|
a response and the value as a list of results from that hardware
|
|
manager.
|
|
"""
|
|
responses = {}
|
|
managers = _get_managers()
|
|
for manager in managers:
|
|
if getattr(manager, method, None):
|
|
try:
|
|
response = getattr(manager, method)(*args, **kwargs)
|
|
except errors.IncompatibleHardwareMethodError:
|
|
LOG.debug('HardwareManager {} does not support {}'
|
|
.format(manager, method))
|
|
continue
|
|
except Exception as e:
|
|
LOG.exception('Unexpected error dispatching %(method)s to '
|
|
'manager %(manager)s: %(e)s',
|
|
{'method': method, 'manager': manager, 'e': e})
|
|
raise
|
|
responses[manager.__class__.__name__] = response
|
|
else:
|
|
LOG.debug('HardwareManager {} does not have method {}'
|
|
.format(manager, method))
|
|
|
|
if responses == {}:
|
|
raise errors.HardwareManagerMethodNotFound(method)
|
|
|
|
return responses
|
|
|
|
|
|
def dispatch_to_managers(method, *args, **kwargs):
|
|
"""Dispatch a method to best suited hardware manager.
|
|
|
|
Dispatches the given method in priority order as sorted by
|
|
`_get_managers`. If the method doesn't exist or raises
|
|
IncompatibleHardwareMethodError, it is attempted again with a more generic
|
|
hardware manager. This continues until a method executes that returns
|
|
any result without raising an IncompatibleHardwareMethodError.
|
|
|
|
:param method: hardware manager method to dispatch
|
|
:param *args: arguments to dispatched method
|
|
:param **kwargs: keyword arguments to dispatched method
|
|
|
|
:returns: result of successful dispatch of method
|
|
:raises HardwareManagerMethodNotFound: if all managers failed the method
|
|
:raises HardwareManagerNotFound: if no valid hardware managers found
|
|
"""
|
|
managers = _get_managers()
|
|
for manager in managers:
|
|
if getattr(manager, method, None):
|
|
try:
|
|
return getattr(manager, method)(*args, **kwargs)
|
|
except(errors.IncompatibleHardwareMethodError):
|
|
LOG.debug('HardwareManager {} does not support {}'
|
|
.format(manager, method))
|
|
except Exception as e:
|
|
LOG.exception('Unexpected error dispatching %(method)s to '
|
|
'manager %(manager)s: %(e)s',
|
|
{'method': method, 'manager': manager, 'e': e})
|
|
raise
|
|
else:
|
|
LOG.debug('HardwareManager {} does not have method {}'
|
|
.format(manager, method))
|
|
|
|
raise errors.HardwareManagerMethodNotFound(method)
|
|
|
|
|
|
def load_managers():
|
|
"""Preload hardware managers into the cache.
|
|
|
|
This method is to help warm up the cache for hardware managers when
|
|
called. Used to resolve bug 1490008, where agents can crash the first
|
|
time a hardware manager is needed.
|
|
|
|
:raises HardwareManagerNotFound: if no valid hardware managers found
|
|
"""
|
|
_get_managers()
|
|
|
|
|
|
def cache_node(node):
|
|
"""Store the node object in the hardware module.
|
|
|
|
Stores the node object in the hardware module to facilitate the
|
|
access of a node information in the hardware extensions.
|
|
|
|
If the new node does not match the previously cached one, wait for the
|
|
expected root device to appear.
|
|
|
|
:param node: Ironic node object
|
|
"""
|
|
global NODE
|
|
new_node = NODE is None or NODE['uuid'] != node['uuid']
|
|
NODE = node
|
|
|
|
if new_node:
|
|
LOG.info('Cached node %s, waiting for its root device to appear',
|
|
node['uuid'])
|
|
# Root device hints, stored in the new node, can change the expected
|
|
# root device. So let us wait for it to appear again.
|
|
dispatch_to_managers('wait_for_disks')
|
|
|
|
|
|
def get_cached_node():
|
|
"""Guard function around the module variable NODE."""
|
|
return NODE
|