# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # Copyright 2013 Red Hat, Inc. # Copyright 2013 New Dream Network, LLC (DreamHost) # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import functools import inspect import logging import threading import traceback from oslo_config import cfg from oslo_service import service from oslo_utils import eventletutils from oslo_utils import timeutils import six from stevedore import driver from oslo_messaging._drivers import base as driver_base from oslo_messaging import _utils as utils from oslo_messaging import exceptions __all__ = [ 'ExecutorLoadFailure', 'MessageHandlingServer', 'MessagingServerError', 'ServerListenError', ] LOG = logging.getLogger(__name__) # The default number of seconds of waiting after which we will emit a log # message DEFAULT_LOG_AFTER = 30 _pool_opts = [ cfg.IntOpt('executor_thread_pool_size', default=64, deprecated_name="rpc_thread_pool_size", help='Size of executor thread pool when' ' executor is threading or eventlet.'), ] class MessagingServerError(exceptions.MessagingException): """Base class for all MessageHandlingServer exceptions.""" class ExecutorLoadFailure(MessagingServerError): """Raised if an executor can't be loaded.""" def __init__(self, executor, ex): msg = 'Failed to load executor "%s": %s' % (executor, ex) super(ExecutorLoadFailure, self).__init__(msg) self.executor = executor self.ex = ex class ServerListenError(MessagingServerError): """Raised if we failed to listen on a target.""" def __init__(self, target, ex): msg = 'Failed to listen on target "%s": %s' % (target, ex) super(ServerListenError, self).__init__(msg) self.target = target self.ex = ex class TaskTimeout(MessagingServerError): """Raised if we timed out waiting for a task to complete.""" class _OrderedTask(object): """A task which must be executed in a particular order. A caller may wait for this task to complete by calling `wait_for_completion`. A caller may run this task with `run_once`, which will ensure that however many times the task is called it only runs once. Simultaneous callers will block until the running task completes, which means that any caller can be sure that the task has completed after run_once returns. """ INIT = 0 # The task has not yet started RUNNING = 1 # The task is running somewhere COMPLETE = 2 # The task has run somewhere def __init__(self, name): """Create a new _OrderedTask. :param name: The name of this task. Used in log messages. """ super(_OrderedTask, self).__init__() self._name = name self._cond = threading.Condition() self._state = self.INIT def _wait(self, condition, msg, log_after, timeout_timer): """Wait while condition() is true. Write a log message if condition() has not become false within `log_after` seconds. Raise TaskTimeout if timeout_timer expires while waiting. """ log_timer = None if log_after != 0: log_timer = timeutils.StopWatch(duration=log_after) log_timer.start() while condition(): if log_timer is not None and log_timer.expired(): LOG.warning('Possible hang: %s', msg) LOG.debug(''.join(traceback.format_stack())) # Only log once. After than we wait indefinitely without # logging. log_timer = None if timeout_timer is not None and timeout_timer.expired(): raise TaskTimeout(msg) timeouts = [] if log_timer is not None: timeouts.append(log_timer.leftover()) if timeout_timer is not None: timeouts.append(timeout_timer.leftover()) wait = None if timeouts: wait = min(timeouts) self._cond.wait(wait) @property def complete(self): return self._state == self.COMPLETE def wait_for_completion(self, caller, log_after, timeout_timer): """Wait until this task has completed. :param caller: The name of the task which is waiting. :param log_after: Emit a log message if waiting longer than `log_after` seconds. :param timeout_timer: Raise TaskTimeout if StopWatch object `timeout_timer` expires while waiting. """ with self._cond: msg = '%s is waiting for %s to complete' % (caller, self._name) self._wait(lambda: not self.complete, msg, log_after, timeout_timer) def run_once(self, fn, log_after, timeout_timer): """Run a task exactly once. If it is currently running in another thread, wait for it to complete. If it has already run, return immediately without running it again. :param fn: The task to run. It must be a callable taking no arguments. It may optionally return another callable, which also takes no arguments, which will be executed after completion has been signaled to other threads. :param log_after: Emit a log message if waiting longer than `log_after` seconds. :param timeout_timer: Raise TaskTimeout if StopWatch object `timeout_timer` expires while waiting. """ with self._cond: if self._state == self.INIT: self._state = self.RUNNING # Note that nothing waits on RUNNING, so no need to notify # We need to release the condition lock before calling out to # prevent deadlocks. Reacquire it immediately afterwards. self._cond.release() try: post_fn = fn() finally: self._cond.acquire() self._state = self.COMPLETE self._cond.notify_all() if post_fn is not None: # Release the condition lock before calling out to prevent # deadlocks. Reacquire it immediately afterwards. self._cond.release() try: post_fn() finally: self._cond.acquire() elif self._state == self.RUNNING: msg = ('%s is waiting for another thread to complete' % self._name) self._wait(lambda: self._state == self.RUNNING, msg, log_after, timeout_timer) class _OrderedTaskRunner(object): """Mixin for a class which executes ordered tasks.""" def __init__(self, *args, **kwargs): super(_OrderedTaskRunner, self).__init__(*args, **kwargs) # Get a list of methods on this object which have the _ordered # attribute self._tasks = [name for (name, member) in inspect.getmembers(self) if inspect.ismethod(member) and getattr(member, '_ordered', False)] self.reset_states() self._reset_lock = threading.Lock() def reset_states(self): # Create new task states for tasks in reset self._states = {task: _OrderedTask(task) for task in self._tasks} @staticmethod def decorate_ordered(fn, state, after, reset_after): @functools.wraps(fn) def wrapper(self, *args, **kwargs): # If the reset_after state has already completed, reset state so # we can run again. # NOTE(mdbooth): This is ugly and requires external locking to be # deterministic when using multiple threads. Consider a thread that # does: server.stop(), server.wait(). If another thread causes a # reset between stop() and wait(), this will not have the intended # behaviour. It is safe without external locking, if the caller # instantiates a new object. with self._reset_lock: if (reset_after is not None and self._states[reset_after].complete): self.reset_states() # Store the states we started with in case the state wraps on us # while we're sleeping. We must wait and run_once in the same # epoch. If the epoch ended while we were sleeping, run_once will # safely do nothing. states = self._states log_after = kwargs.pop('log_after', DEFAULT_LOG_AFTER) timeout = kwargs.pop('timeout', None) timeout_timer = None if timeout is not None: timeout_timer = timeutils.StopWatch(duration=timeout) timeout_timer.start() # Wait for the given preceding state to complete if after is not None: states[after].wait_for_completion(state, log_after, timeout_timer) # Run this state states[state].run_once(lambda: fn(self, *args, **kwargs), log_after, timeout_timer) return wrapper def ordered(after=None, reset_after=None): """A method which will be executed as an ordered task. The method will be called exactly once, however many times it is called. If it is called multiple times simultaneously it will only be called once, but all callers will wait until execution is complete. If `after` is given, this method will not run until `after` has completed. If `reset_after` is given and the target method has completed, allow this task to run again by resetting all task states. :param after: Optionally, the name of another `ordered` method. Wait for the completion of `after` before executing this method. :param reset_after: Optionally, the name of another `ordered` method. Reset all states when calling this method if `reset_after` has completed. """ def _ordered(fn): # Set an attribute on the method so we can find it later setattr(fn, '_ordered', True) state = fn.__name__ return _OrderedTaskRunner.decorate_ordered(fn, state, after, reset_after) return _ordered @six.add_metaclass(abc.ABCMeta) class MessageHandlingServer(service.ServiceBase, _OrderedTaskRunner): """Server for handling messages. Connect a transport to a dispatcher that knows how to process the message using an executor that knows how the app wants to create new tasks. """ def __init__(self, transport, dispatcher, executor=None): """Construct a message handling server. The dispatcher parameter is a DispatcherBase instance which is used for routing request to endpoint for processing. The executor parameter controls how incoming messages will be received and dispatched. Executor is automatically detected from execution environment. It handles many message in parallel. If your application need asynchronism then you need to consider to use the eventlet executor. :param transport: the messaging transport :type transport: Transport :param dispatcher: has a dispatch() method which is invoked for each incoming request :type dispatcher: DispatcherBase :param executor: name of message executor - available values are 'eventlet' and 'threading' :type executor: str """ if executor and executor not in ("threading", "eventlet"): raise ExecutorLoadFailure( executor, "Executor should be None or 'eventlet' and 'threading'") if not executor: executor = utils.get_executor_with_context() self.conf = transport.conf self.conf.register_opts(_pool_opts) self.transport = transport self.dispatcher = dispatcher self.executor_type = executor if self.executor_type == "eventlet": eventletutils.warn_eventlet_not_patched( expected_patched_modules=['thread'], what="the 'oslo.messaging eventlet executor'") self.listener = None try: mgr = driver.DriverManager('oslo.messaging.executors', self.executor_type) except RuntimeError as ex: raise ExecutorLoadFailure(self.executor_type, ex) self._executor_cls = mgr.driver self._work_executor = None self._started = False super(MessageHandlingServer, self).__init__() def _on_incoming(self, incoming): """Handles on_incoming event :param incoming: incoming request. """ self._work_executor.submit(self._process_incoming, incoming) @abc.abstractmethod def _process_incoming(self, incoming): """Perform processing incoming request :param incoming: incoming request. """ @abc.abstractmethod def _create_listener(self): """Creates listener object for polling requests :return: MessageListenerAdapter """ @ordered(reset_after='stop') def start(self, override_pool_size=None): """Start handling incoming messages. This method causes the server to begin polling the transport for incoming messages and passing them to the dispatcher. Message processing will continue until the stop() method is called. The executor controls how the server integrates with the applications I/O handling strategy - it may choose to poll for messages in a new process, thread or co-operatively scheduled coroutine or simply by registering a callback with an event loop. Similarly, the executor may choose to dispatch messages in a new thread, coroutine or simply the current thread. """ if self._started: LOG.warning('The server has already been started. Ignoring ' 'the redundant call to start().') return self._started = True executor_opts = {} executor_opts["max_workers"] = ( override_pool_size or self.conf.executor_thread_pool_size ) self._work_executor = self._executor_cls(**executor_opts) try: self.listener = self._create_listener() except driver_base.TransportDriverError as ex: raise ServerListenError(self.target, ex) self.listener.start(self._on_incoming) @ordered(after='start') def stop(self): """Stop handling incoming messages. Once this method returns, no new incoming messages will be handled by the server. However, the server may still be in the process of handling some messages, and underlying driver resources associated to this server are still in use. See 'wait' for more details. """ if self.listener: self.listener.stop() self._started = False @ordered(after='stop') def wait(self): """Wait for message processing to complete. After calling stop(), there may still be some existing messages which have not been completely processed. The wait() method blocks until all message processing has completed. Once it's finished, the underlying driver resources associated to this server are released (like closing useless network connections). """ self._work_executor.shutdown(wait=True) # Close listener connection after processing all messages if self.listener: self.listener.cleanup() def reset(self): """Reset service. Called in case service running in daemon mode receives SIGHUP. """ # TODO(sergey.vilgelm): implement this method pass