Add performance degradation SLA plugin

This adds SLA plugin that finds minimum and maximum duration of
iterations completed without errors during Rally task execution.
Assuming that minimum duration is 100%, it calculates
performance degradation against maximum duration.

Example config:
  sla:
    performance_degradation:
      max_degradation: 75

Spec: sla_pd_plugin
Change-Id: Ieedba7be72364f5599a3c0cf79f5f494a7391ea0
This commit is contained in:
Anton Studenov 2016-07-26 12:47:53 +03:00
parent 482c8a49ce
commit 4837a8b5ed
7 changed files with 294 additions and 0 deletions

View File

@ -404,6 +404,8 @@
max: 1 max: 1
min_iterations: 10 min_iterations: 10
sigmas: 10 sigmas: 10
performance_degradation:
max_degradation: 50
- -
args: args:

View File

@ -13,6 +13,8 @@
# License for the specific language governing permissions and limitations # License for the specific language governing permissions and limitations
# under the License. # under the License.
from __future__ import division
import abc import abc
import math import math
@ -204,3 +206,36 @@ class IncrementComputation(StreamingAlgorithm):
def result(self): def result(self):
return self._count return self._count
class DegradationComputation(StreamingAlgorithm):
"""Calculates degradation from a stream of numbers
Finds min and max values from a stream and then calculates
ratio between them in percentage. Works only with positive numbers.
"""
def __init__(self):
self.min_value = MinComputation()
self.max_value = MaxComputation()
def add(self, value):
if value <= 0.0:
raise ValueError("Unexpected value: %s" % value)
self.min_value.add(value)
self.max_value.add(value)
def merge(self, other):
min_result = other.min_value.result()
if min_result is not None:
self.min_value.add(min_result)
max_result = other.max_value.result()
if max_result is not None:
self.max_value.add(max_result)
def result(self):
min_result = self.min_value.result()
max_result = self.max_value.result()
if min_result is None or max_result is None:
return 0.0
return (max_result / min_result - 1) * 100.0

View File

@ -0,0 +1,74 @@
# Copyright 2016: Mirantis Inc.
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""
SLA (Service-level agreement) is set of details for determining compliance
with contracted values such as maximum error rate or minimum response time.
"""
from __future__ import division
from rally.common.i18n import _
from rally.common import streaming_algorithms
from rally.common import utils
from rally import consts
from rally.task import sla
@sla.configure(name="performance_degradation")
class PerformanceDegradation(sla.SLA):
"""Calculates perfomance degradation based on iteration time
This SLA plugin finds minimum and maximum duration of
iterations completed without errors during Rally task execution.
Assuming that minimum duration is 100%, it calculates
performance degradation against maximum duration.
"""
CONFIG_SCHEMA = {
"type": "object",
"$schema": consts.JSON_SCHEMA,
"properties": {
"max_degradation": {
"type": "number",
"minimum": 0.0,
},
},
"required": [
"max_degradation",
],
"additionalProperties": False,
}
def __init__(self, criterion_value):
super(PerformanceDegradation, self).__init__(criterion_value)
self.max_degradation = self.criterion_value["max_degradation"]
self.degradation = streaming_algorithms.DegradationComputation()
def add_iteration(self, iteration):
if not iteration.get("error"):
self.degradation.add(iteration["duration"])
self.success = self.degradation.result() <= self.max_degradation
return self.success
def merge(self, other):
self.degradation.merge(other.degradation)
self.success = self.degradation.result() <= self.max_degradation
return self.success
def details(self):
return (_("Current degradation: %s%% - %s") %
(utils.format_float_to_str(self.degradation.result() or 0.0),
self.status()))

View File

@ -980,3 +980,50 @@ class SLAExtraFlagsTestCase(unittest.TestCase):
"times": 5, "times": 5,
"rps": 3, "rps": 3,
"timeout": 6}) "timeout": 6})
class SLAPerfDegrTestCase(unittest.TestCase):
def _get_sample_task_config(self, max_degradation=500):
return {
"Dummy.dummy_random_action": [
{
"args": {
"actions_num": 5,
"sleep_min": 0.5,
"sleep_max": 2
},
"runner": {
"type": "constant",
"times": 10,
"concurrency": 5
},
"sla": {
"performance_degradation": {
"max_degradation": max_degradation
}
}
}
]
}
def test_sla_fail(self):
rally = utils.Rally()
cfg = self._get_sample_task_config(max_degradation=1)
config = utils.TaskConfig(cfg)
rally("task start --task %s" % config.filename)
self.assertRaises(utils.RallyCliError, rally, "task sla_check")
def test_sla_success(self):
rally = utils.Rally()
config = utils.TaskConfig(self._get_sample_task_config())
rally("task start --task %s" % config.filename)
rally("task sla_check")
expected = [
{"benchmark": "Dummy.dummy_random_action",
"criterion": "performance_degradation",
"detail": mock.ANY,
"pos": 0, "status": "PASS"},
]
data = rally("task sla_check --json", getjson=True)
self.assertEqual(expected, data)

View File

@ -274,3 +274,47 @@ class IncrementComputationTestCase(test.TestCase):
self.assertEqual(single_inc._count, merged_inc._count) self.assertEqual(single_inc._count, merged_inc._count)
self.assertEqual(single_inc.result(), merged_inc.result()) self.assertEqual(single_inc.result(), merged_inc.result())
@ddt.ddt
class DegradationComputationTestCase(test.TestCase):
@ddt.data(
([], None, None, 0.0),
([30.0, 30.0, 30.0, 30.0], 30.0, 30.0, 0.0),
([45.0, 45.0, 45.0, 30.0], 30.0, 45.0, 50.0),
([15.0, 10.0, 20.0, 19.0], 10.0, 20.0, 100.0),
([30.0, 56.0, 90.0, 73.0], 30.0, 90.0, 200.0))
@ddt.unpack
def test_add(self, stream, min_value, max_value, result):
comp = algo.DegradationComputation()
for value in stream:
comp.add(value)
self.assertEqual(min_value, comp.min_value.result())
self.assertEqual(max_value, comp.max_value.result())
self.assertEqual(result, comp.result())
@ddt.data(-10.0, -1.0, -1, 0.0, 0)
def test_add_raise(self, value):
comp = algo.DegradationComputation()
self.assertRaises(ValueError, comp.add, value)
@ddt.data(([39.0, 30.0, 32.0], [49.0, 40.0, 51.0], 30.0, 51.0, 70.0),
([31.0, 30.0, 32.0], [39.0, 45.0, 43.0], 30.0, 45.0, 50.0),
([], [31.0, 30.0, 45.0], 30.0, 45.0, 50.0),
([31.0, 30.0, 45.0], [], 30.0, 45.0, 50.0),
([], [], None, None, 0.0))
@ddt.unpack
def test_merge(self, stream1, stream2, min_value, max_value, result):
comp1 = algo.DegradationComputation()
for value in stream1:
comp1.add(value)
comp2 = algo.DegradationComputation()
for value in stream2:
comp2.add(value)
comp1.merge(comp2)
self.assertEqual(min_value, comp1.min_value.result())
self.assertEqual(max_value, comp1.max_value.result())
self.assertEqual(result, comp1.result())

View File

@ -0,0 +1,92 @@
# Copyright 2016: Mirantis Inc.
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import ddt
import jsonschema
from rally.plugins.common.sla import performance_degradation as perfdegr
from tests.unit import test
@ddt.ddt
class PerformanceDegradationTestCase(test.TestCase):
def setUp(self):
super(PerformanceDegradationTestCase, self).setUp()
self.sla = perfdegr.PerformanceDegradation({"max_degradation": 50})
def test_config_schema(self):
properties = {
"performance_degradation": {}
}
self.assertRaises(
jsonschema.ValidationError,
perfdegr.PerformanceDegradation.validate,
properties)
properties["performance_degradation"]["max_degradation"] = -1
self.assertRaises(
jsonschema.ValidationError,
perfdegr.PerformanceDegradation.validate,
properties)
properties["performance_degradation"]["max_degradation"] = 1000.0
perfdegr.PerformanceDegradation.validate(properties)
@ddt.data(([39.0, 30.0, 32.0, 49.0, 47.0, 43.0], False, "Failed"),
([31.0, 30.0, 32.0, 39.0, 45.0, 43.0], True, "Passed"),
([], True, "Passed"))
@ddt.unpack
def test_iterations(self, durations, result, status):
for duration in durations:
self.sla.add_iteration({"duration": duration})
self.assertIs(self.sla.success, result)
self.assertIs(self.sla.result()["success"], result)
self.assertEqual(status, self.sla.status())
@ddt.data(([39.0, 30.0, 32.0], [49.0, 40.0, 51.0], False, "Failed"),
([31.0, 30.0, 32.0], [39.0, 45.0, 43.0], True, "Passed"),
([31.0, 30.0, 32.0], [32.0, 49.0, 30.0], False, "Failed"),
([], [31.0, 30.0, 32.0], True, "Passed"),
([31.0, 30.0, 32.0], [], True, "Passed"),
([], [], True, "Passed"),
([35.0, 30.0, 49.0], [], False, "Failed"),
([], [35.0, 30.0, 49.0], False, "Failed"))
@ddt.unpack
def test_merge(self, durations1, durations2, result, status):
for duration in durations1:
self.sla.add_iteration({"duration": duration})
sla2 = perfdegr.PerformanceDegradation({"max_degradation": 50})
for duration in durations2:
sla2.add_iteration({"duration": duration})
self.sla.merge(sla2)
self.assertIs(self.sla.success, result)
self.assertIs(self.sla.result()["success"], result)
self.assertEqual(status, self.sla.status())
def test_details(self):
self.assertEqual("Current degradation: 0.0% - Passed",
self.sla.details())
for duration in [39.0, 30.0, 32.0]:
self.sla.add_iteration({"duration": duration})
self.assertEqual("Current degradation: 30.0% - Passed",
self.sla.details())
self.sla.add_iteration({"duration": 75.0})
self.assertEqual("Current degradation: 150.0% - Failed",
self.sla.details())