Make reconstructor go faster with --override-devices

The object reconstructor will now fork all available worker processes
when operating on a subset of local devices.

Example:
  A system has 24 disks, named "d1" through "d24"
  reconstructor_workers = 8
  invoked with --override-devices=d1,d2,d3,d4,d5,d6

In this case, the reconstructor will now use 6 worker processes, one
per disk. The old behavior was to use 2 worker processes, one for d1,
d3, and d5 and the other for d2, d4, and d6 (because 24 / 8 = 3, so we
assigned 3 disks per worker before creating another).

I think the new behavior better matches operators' expectations. If I
give a concurrent program six tasks to do and tell it to operate on up
to eight at a time, I'd expect it to do all six tasks at once, not run
two concurrent batches of three tasks apiece.

This has no effect when --override-devices is not specified. When
operating on all local devices instead of a subset, the new and old
code produce the same result.

The reconstructor's behavior now matches the object replicator's
behavior.

Change-Id: Ib308c156c77b9b92541a12dd7e9b1a8ea8307a30
This commit is contained in:
Samuel Merritt 2018-03-23 15:56:26 -07:00
parent 47efb5b969
commit c4751d0d55
5 changed files with 107 additions and 59 deletions

View File

@ -4740,3 +4740,13 @@ def parse_override_options(**kwargs):
return OverrideOptions(devices=devices, partitions=partitions,
policies=policies)
def distribute_evenly(items, num_buckets):
"""
Distribute items as evenly as possible into N buckets.
"""
out = [[] for _ in range(num_buckets)]
for index, item in enumerate(items):
out[index % num_buckets].append(item)
return out

View File

@ -15,7 +15,6 @@
import json
import errno
import math
import os
from os.path import join
import random
@ -34,7 +33,7 @@ from swift.common.utils import (
whataremyips, unlink_older_than, compute_eta, get_logger,
dump_recon_cache, mkdirs, config_true_value,
tpool_reraise, GreenAsyncPile, Timestamp, remove_file,
load_recon_cache, parse_override_options)
load_recon_cache, parse_override_options, distribute_evenly)
from swift.common.header_key_dict import HeaderKeyDict
from swift.common.bufferedhttp import http_connect
from swift.common.daemon import Daemon
@ -228,16 +227,14 @@ class ObjectReconstructor(Daemon):
yield dict(override_devices=override_opts.devices,
override_partitions=override_opts.partitions)
return
# for somewhat uniform load per worker use same max_devices_per_worker
# when handling all devices or just override devices...
max_devices_per_worker = int(math.ceil(
1.0 * len(self.all_local_devices) / self.reconstructor_workers))
# ...but only use enough workers for the actual devices being handled
n = int(math.ceil(1.0 * len(devices) / max_devices_per_worker))
override_devices_per_worker = [devices[i::n] for i in range(n)]
for override_devices_pw in override_devices_per_worker:
yield dict(override_devices=override_devices_pw,
override_partitions=override_opts.partitions)
# for somewhat uniform load per worker use same
# max_devices_per_worker when handling all devices or just override
# devices, but only use enough workers for the actual devices being
# handled
n_workers = min(self.reconstructor_workers, len(devices))
for ods in distribute_evenly(devices, n_workers):
yield dict(override_partitions=override_opts.partitions,
override_devices=ods)
def is_healthy(self):
"""

View File

@ -35,7 +35,8 @@ from swift.common.utils import whataremyips, unlink_older_than, \
compute_eta, get_logger, dump_recon_cache, \
rsync_module_interpolation, mkdirs, config_true_value, \
tpool_reraise, config_auto_int_value, storage_directory, \
load_recon_cache, PrefixLoggerAdapter, parse_override_options
load_recon_cache, PrefixLoggerAdapter, parse_override_options, \
distribute_evenly
from swift.common.bufferedhttp import http_connect
from swift.common.daemon import Daemon
from swift.common.http import HTTP_OK, HTTP_INSUFFICIENT_STORAGE
@ -258,19 +259,14 @@ class ObjectReplicator(Daemon):
# Distribute devices among workers as evenly as possible
self.replicator_workers = min(self.replicator_workers,
len(devices_to_replicate))
worker_args = [
{
'override_devices': [],
return [{'override_devices': devs,
'override_partitions': override_opts.partitions,
'override_policies': override_opts.policies,
'have_overrides': have_overrides,
'multiprocess_worker_index': i,
}
for i in range(self.replicator_workers)]
for index, device in enumerate(devices_to_replicate):
idx = index % self.replicator_workers
worker_args[idx]['override_devices'].append(device)
return worker_args
'multiprocess_worker_index': index}
for index, devs in enumerate(
distribute_evenly(devices_to_replicate,
self.replicator_workers))]
def is_healthy(self):
"""

View File

@ -6622,5 +6622,39 @@ class TestPipeMutex(unittest.TestCase):
eventlet.debug.hub_prevent_multiple_readers(True)
class TestDistributeEvenly(unittest.TestCase):
def test_evenly_divided(self):
out = utils.distribute_evenly(range(12), 3)
self.assertEqual(out, [
[0, 3, 6, 9],
[1, 4, 7, 10],
[2, 5, 8, 11],
])
out = utils.distribute_evenly(range(12), 4)
self.assertEqual(out, [
[0, 4, 8],
[1, 5, 9],
[2, 6, 10],
[3, 7, 11],
])
def test_uneven(self):
out = utils.distribute_evenly(range(11), 3)
self.assertEqual(out, [
[0, 3, 6, 9],
[1, 4, 7, 10],
[2, 5, 8],
])
def test_just_one(self):
out = utils.distribute_evenly(range(5), 1)
self.assertEqual(out, [[0, 1, 2, 3, 4]])
def test_more_buckets_than_items(self):
out = utils.distribute_evenly(range(5), 7)
self.assertEqual(out, [[0], [1], [2], [3], [4], [], []])
if __name__ == '__main__':
unittest.main()

View File

@ -1474,13 +1474,15 @@ class TestWorkerReconstructor(unittest.TestCase):
self.assertEqual(2, reconstructor.reconstructor_workers)
worker_args = list(reconstructor.get_worker_args(
once=True, devices='sdb,sdd,sdf', partitions='99,333'))
self.assertEqual(1, len(worker_args))
# 5 devices in total, 2 workers -> up to 3 devices per worker so a
# single worker should handle the requested override devices
self.assertEqual([
{'override_partitions': [99, 333], 'override_devices': [
'sdb', 'sdd', 'sdf']},
], worker_args)
# 3 devices to operate on, 2 workers -> one worker gets two devices
# and the other worker just gets one
self.assertEqual([{
'override_partitions': [99, 333],
'override_devices': ['sdb', 'sdf'],
}, {
'override_partitions': [99, 333],
'override_devices': ['sdd'],
}], worker_args)
# with 4 override devices, expect 2 per worker
worker_args = list(reconstructor.get_worker_args(
@ -1524,26 +1526,41 @@ class TestWorkerReconstructor(unittest.TestCase):
{}, logger=self.logger)
reconstructor.get_local_devices = lambda: [
'd%s' % (i + 1) for i in range(21)]
# ... with many devices per worker, worker count is pretty granular
for i in range(1, 8):
reconstructor.reconstructor_workers = i
self.assertEqual(i, len(list(reconstructor.get_worker_args())))
# ... then it gets sorta stair step
for i in range(9, 10):
reconstructor.reconstructor_workers = i
self.assertEqual(7, len(list(reconstructor.get_worker_args())))
# 2-3 devices per worker
for args in reconstructor.get_worker_args():
self.assertIn(len(args['override_devices']), (2, 3))
for i in range(11, 20):
reconstructor.reconstructor_workers = i
self.assertEqual(11, len(list(reconstructor.get_worker_args())))
# 1, 2 devices per worker
for args in reconstructor.get_worker_args():
self.assertIn(len(args['override_devices']), (1, 2))
# this is debatable, but maybe I'll argue if you're going to have
# *some* workers with > 1 device, it's better to have fewer workers
# with devices spread out evenly than a couple outliers?
# With more devices than workers, the work is spread out as evenly
# as we can manage. When number-of-devices is a multiple of
# number-of-workers, every worker has the same number of devices to
# operate on.
reconstructor.reconstructor_workers = 7
worker_args = list(reconstructor.get_worker_args())
self.assertEqual([len(a['override_devices']) for a in worker_args],
[3] * 7)
# When number-of-devices is not a multiple of number-of-workers,
# device counts differ by at most 1.
reconstructor.reconstructor_workers = 5
worker_args = list(reconstructor.get_worker_args())
self.assertEqual(
sorted([len(a['override_devices']) for a in worker_args]),
[4, 4, 4, 4, 5])
# With more workers than devices, we don't create useless workers.
# We'll only make one per device.
reconstructor.reconstructor_workers = 22
worker_args = list(reconstructor.get_worker_args())
self.assertEqual(
[len(a['override_devices']) for a in worker_args],
[1] * 21)
# This is true even if we have far more workers than devices.
reconstructor.reconstructor_workers = 2 ** 16
worker_args = list(reconstructor.get_worker_args())
self.assertEqual(
[len(a['override_devices']) for a in worker_args],
[1] * 21)
# Spot check one full result for sanity's sake
reconstructor.reconstructor_workers = 11
self.assertEqual([
{'override_partitions': [], 'override_devices': ['d1', 'd12']},
{'override_partitions': [], 'override_devices': ['d2', 'd13']},
@ -1557,12 +1574,6 @@ class TestWorkerReconstructor(unittest.TestCase):
{'override_partitions': [], 'override_devices': ['d10', 'd21']},
{'override_partitions': [], 'override_devices': ['d11']},
], list(reconstructor.get_worker_args()))
# you can't get < than 1 device per worker
for i in range(21, 52):
reconstructor.reconstructor_workers = i
self.assertEqual(21, len(list(reconstructor.get_worker_args())))
for args in reconstructor.get_worker_args():
self.assertEqual(1, len(args['override_devices']))
def test_next_rcache_update_configured_with_stats_interval(self):
now = time.time()