Add a conductor running example
Create an example which can be extended to create a simplistic review checkout, tox running system which can be used to run some set of actions on every review posted. This could be expanded and connected into a gerrit pipeline to create a mini-jenkins like trigger/build/result system. Part of ongoing blueprint more-examples Change-Id: I5cf1bf02eeddf897ac7f098f1d73377f262a267b
This commit is contained in:
parent
f734467ddc
commit
3bbbcc6842
@ -330,3 +330,15 @@ Jobboard producer/consumer (simple)
|
||||
:language: python
|
||||
:linenos:
|
||||
:lines: 16-
|
||||
|
||||
Conductor simulating a CI pipeline
|
||||
==================================
|
||||
|
||||
.. note::
|
||||
|
||||
Full source located at :example:`tox_conductor`
|
||||
|
||||
.. literalinclude:: ../../taskflow/examples/tox_conductor.py
|
||||
:language: python
|
||||
:linenos:
|
||||
:lines: 16-
|
||||
|
243
taskflow/examples/tox_conductor.py
Normal file
243
taskflow/examples/tox_conductor.py
Normal file
@ -0,0 +1,243 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright (C) 2014 Yahoo! Inc. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
# not use this file except in compliance with the License. You may obtain
|
||||
# a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
# License for the specific language governing permissions and limitations
|
||||
# under the License.
|
||||
|
||||
import contextlib
|
||||
import itertools
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
import socket
|
||||
import sys
|
||||
import tempfile
|
||||
import threading
|
||||
import time
|
||||
|
||||
logging.basicConfig(level=logging.ERROR)
|
||||
|
||||
top_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),
|
||||
os.pardir,
|
||||
os.pardir))
|
||||
sys.path.insert(0, top_dir)
|
||||
|
||||
from oslo_utils import timeutils
|
||||
from oslo_utils import uuidutils
|
||||
import six
|
||||
from zake import fake_client
|
||||
|
||||
from taskflow.conductors import backends as conductors
|
||||
from taskflow import engines
|
||||
from taskflow.jobs import backends as boards
|
||||
from taskflow.patterns import linear_flow
|
||||
from taskflow.persistence import backends as persistence
|
||||
from taskflow.persistence import logbook
|
||||
from taskflow import task
|
||||
from taskflow.utils import threading_utils
|
||||
|
||||
# INTRO: This examples shows how a worker/producer can post desired work (jobs)
|
||||
# to a jobboard and a conductor can consume that work (jobs) from that jobboard
|
||||
# and execute those jobs in a reliable & async manner (for example, if the
|
||||
# conductor were to crash then the job will be released back onto the jobboard
|
||||
# and another conductor can attempt to finish it, from wherever that job last
|
||||
# left off).
|
||||
#
|
||||
# In this example a in-memory jobboard (and in-memory storage) is created and
|
||||
# used that simulates how this would be done at a larger scale (it is an
|
||||
# example after all).
|
||||
|
||||
# Restrict how long this example runs for...
|
||||
RUN_TIME = 5
|
||||
REVIEW_CREATION_DELAY = 0.5
|
||||
SCAN_DELAY = 0.1
|
||||
NAME = "%s_%s" % (socket.getfqdn(), os.getpid())
|
||||
|
||||
# This won't really use zookeeper but will use a local version of it using
|
||||
# the zake library that mimics an actual zookeeper cluster using threads and
|
||||
# an in-memory data structure.
|
||||
JOBBOARD_CONF = {
|
||||
'board': 'zookeeper://localhost?path=/taskflow/tox/jobs',
|
||||
}
|
||||
|
||||
|
||||
class RunReview(task.Task):
|
||||
# A dummy task that clones the review and runs tox...
|
||||
|
||||
def _clone_review(self, review, temp_dir):
|
||||
print("Cloning review '%s' into %s" % (review['id'], temp_dir))
|
||||
|
||||
def _run_tox(self, temp_dir):
|
||||
print("Running tox in %s" % temp_dir)
|
||||
|
||||
def execute(self, review, temp_dir):
|
||||
self._clone_review(review, temp_dir)
|
||||
self._run_tox(temp_dir)
|
||||
|
||||
|
||||
class MakeTempDir(task.Task):
|
||||
# A task that creates and destroys a temporary dir (on failure).
|
||||
#
|
||||
# It provides the location of the temporary dir for other tasks to use
|
||||
# as they see fit.
|
||||
|
||||
default_provides = 'temp_dir'
|
||||
|
||||
def execute(self):
|
||||
return tempfile.mkdtemp()
|
||||
|
||||
def revert(self, *args, **kwargs):
|
||||
temp_dir = kwargs.get(task.REVERT_RESULT)
|
||||
if temp_dir:
|
||||
shutil.rmtree(temp_dir)
|
||||
|
||||
|
||||
class CleanResources(task.Task):
|
||||
# A task that cleans up any workflow resources.
|
||||
|
||||
def execute(self, temp_dir):
|
||||
print("Removing %s" % temp_dir)
|
||||
shutil.rmtree(temp_dir)
|
||||
|
||||
|
||||
def review_iter():
|
||||
"""Makes reviews (never-ending iterator/generator)."""
|
||||
review_id_gen = itertools.count(0)
|
||||
while True:
|
||||
review_id = six.next(review_id_gen)
|
||||
review = {
|
||||
'id': review_id,
|
||||
}
|
||||
yield review
|
||||
|
||||
|
||||
# The reason this is at the module namespace level is important, since it must
|
||||
# be accessible from a conductor dispatching an engine, if it was a lambda
|
||||
# function for example, it would not be reimportable and the conductor would
|
||||
# be unable to reference it when creating the workflow to run.
|
||||
def create_review_workflow():
|
||||
"""Factory method used to create a review workflow to run."""
|
||||
f = linear_flow.Flow("tester")
|
||||
f.add(
|
||||
MakeTempDir(name="maker"),
|
||||
RunReview(name="runner"),
|
||||
CleanResources(name="cleaner")
|
||||
)
|
||||
return f
|
||||
|
||||
|
||||
def generate_reviewer(client, saver, name=NAME):
|
||||
"""Creates a review producer thread with the given name prefix."""
|
||||
real_name = "%s_reviewer" % name
|
||||
no_more = threading.Event()
|
||||
jb = boards.fetch(real_name, JOBBOARD_CONF,
|
||||
client=client, persistence=saver)
|
||||
|
||||
def make_save_book(saver, review_id):
|
||||
# Record what we want to happen (sometime in the future).
|
||||
book = logbook.LogBook("book_%s" % review_id)
|
||||
detail = logbook.FlowDetail("flow_%s" % review_id,
|
||||
uuidutils.generate_uuid())
|
||||
book.add(detail)
|
||||
# Associate the factory method we want to be called (in the future)
|
||||
# with the book, so that the conductor will be able to call into
|
||||
# that factory to retrieve the workflow objects that represent the
|
||||
# work.
|
||||
#
|
||||
# These args and kwargs *can* be used to save any specific parameters
|
||||
# into the factory when it is being called to create the workflow
|
||||
# objects (typically used to tell a factory how to create a unique
|
||||
# workflow that represents this review).
|
||||
factory_args = ()
|
||||
factory_kwargs = {}
|
||||
engines.save_factory_details(detail, create_review_workflow,
|
||||
factory_args, factory_kwargs)
|
||||
with contextlib.closing(saver.get_connection()) as conn:
|
||||
conn.save_logbook(book)
|
||||
return book
|
||||
|
||||
def run():
|
||||
"""Periodically publishes 'fake' reviews to analyze."""
|
||||
jb.connect()
|
||||
review_generator = review_iter()
|
||||
with contextlib.closing(jb):
|
||||
while not no_more.is_set():
|
||||
review = six.next(review_generator)
|
||||
details = {
|
||||
'store': {
|
||||
'review': review,
|
||||
},
|
||||
}
|
||||
job_name = "%s_%s" % (real_name, review['id'])
|
||||
print("Posting review '%s'" % review['id'])
|
||||
jb.post(job_name,
|
||||
book=make_save_book(saver, review['id']),
|
||||
details=details)
|
||||
time.sleep(REVIEW_CREATION_DELAY)
|
||||
|
||||
# Return the unstarted thread, and a callback that can be used
|
||||
# shutdown that thread (to avoid running forever).
|
||||
return (threading_utils.daemon_thread(target=run), no_more.set)
|
||||
|
||||
|
||||
def generate_conductor(client, saver, name=NAME):
|
||||
"""Creates a conductor thread with the given name prefix."""
|
||||
real_name = "%s_conductor" % name
|
||||
jb = boards.fetch(name, JOBBOARD_CONF,
|
||||
client=client, persistence=saver)
|
||||
conductor = conductors.fetch("blocking", real_name, jb,
|
||||
engine='parallel', wait_timeout=SCAN_DELAY)
|
||||
|
||||
def run():
|
||||
jb.connect()
|
||||
with contextlib.closing(jb):
|
||||
conductor.run()
|
||||
|
||||
# Return the unstarted thread, and a callback that can be used
|
||||
# shutdown that thread (to avoid running forever).
|
||||
return (threading_utils.daemon_thread(target=run), conductor.stop)
|
||||
|
||||
|
||||
def main():
|
||||
# Need to share the same backend, so that data can be shared...
|
||||
persistence_conf = {
|
||||
'connection': 'memory',
|
||||
}
|
||||
saver = persistence.fetch(persistence_conf)
|
||||
with contextlib.closing(saver.get_connection()) as conn:
|
||||
# This ensures that the needed backend setup/data directories/schema
|
||||
# upgrades and so on... exist before they are attempted to be used...
|
||||
conn.upgrade()
|
||||
fc1 = fake_client.FakeClient()
|
||||
# Done like this to share the same client storage location so the correct
|
||||
# zookeeper features work across clients...
|
||||
fc2 = fake_client.FakeClient(storage=fc1.storage)
|
||||
entities = [
|
||||
generate_reviewer(fc1, saver),
|
||||
generate_conductor(fc2, saver),
|
||||
]
|
||||
for t, stopper in entities:
|
||||
t.start()
|
||||
try:
|
||||
watch = timeutils.StopWatch(duration=RUN_TIME)
|
||||
watch.start()
|
||||
while not watch.expired():
|
||||
time.sleep(0.1)
|
||||
finally:
|
||||
for t, stopper in reversed(entities):
|
||||
stopper()
|
||||
t.join()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user