Merge "Noisy Neighbor Strategy"

This commit is contained in:
Jenkins 2017-06-28 12:06:15 +00:00 committed by Gerrit Code Review
commit 264b0fe9a1
9 changed files with 564 additions and 6 deletions

View File

@ -53,6 +53,7 @@ watcher_goals =
thermal_optimization = watcher.decision_engine.goal.goals:ThermalOptimization thermal_optimization = watcher.decision_engine.goal.goals:ThermalOptimization
workload_balancing = watcher.decision_engine.goal.goals:WorkloadBalancing workload_balancing = watcher.decision_engine.goal.goals:WorkloadBalancing
airflow_optimization = watcher.decision_engine.goal.goals:AirflowOptimization airflow_optimization = watcher.decision_engine.goal.goals:AirflowOptimization
noisy_neighbor = watcher.decision_engine.goal.goals:NoisyNeighborOptimization
watcher_scoring_engines = watcher_scoring_engines =
dummy_scorer = watcher.decision_engine.scoring.dummy_scorer:DummyScorer dummy_scorer = watcher.decision_engine.scoring.dummy_scorer:DummyScorer
@ -70,6 +71,7 @@ watcher_strategies =
workload_stabilization = watcher.decision_engine.strategy.strategies.workload_stabilization:WorkloadStabilization workload_stabilization = watcher.decision_engine.strategy.strategies.workload_stabilization:WorkloadStabilization
workload_balance = watcher.decision_engine.strategy.strategies.workload_balance:WorkloadBalance workload_balance = watcher.decision_engine.strategy.strategies.workload_balance:WorkloadBalance
uniform_airflow = watcher.decision_engine.strategy.strategies.uniform_airflow:UniformAirflow uniform_airflow = watcher.decision_engine.strategy.strategies.uniform_airflow:UniformAirflow
noisy_neighbor = watcher.decision_engine.strategy.strategies.noisy_neighbor:NoisyNeighbor
watcher_actions = watcher_actions =
migrate = watcher.applier.actions.migration:Migrate migrate = watcher.applier.actions.migration:Migrate

View File

@ -21,6 +21,8 @@ ServerConsolidation = goals.ServerConsolidation
ThermalOptimization = goals.ThermalOptimization ThermalOptimization = goals.ThermalOptimization
Unclassified = goals.Unclassified Unclassified = goals.Unclassified
WorkloadBalancing = goals.WorkloadBalancing WorkloadBalancing = goals.WorkloadBalancing
NoisyNeighbor = goals.NoisyNeighborOptimization
__all__ = ("Dummy", "ServerConsolidation", "ThermalOptimization", __all__ = ("Dummy", "ServerConsolidation", "ThermalOptimization",
"Unclassified", "WorkloadBalancing", ) "Unclassified", "WorkloadBalancing",
"NoisyNeighborOptimization",)

View File

@ -166,3 +166,29 @@ class AirflowOptimization(base.Goal):
def get_efficacy_specification(cls): def get_efficacy_specification(cls):
"""The efficacy spec for the current goal""" """The efficacy spec for the current goal"""
return specs.Unclassified() return specs.Unclassified()
class NoisyNeighborOptimization(base.Goal):
"""NoisyNeighborOptimization
This goal is used to identify and migrate a Noisy Neighbor -
a low priority VM that negatively affects peformance of a high priority VM
in terms of IPC by over utilizing Last Level Cache.
"""
@classmethod
def get_name(cls):
return "noisy_neighbor"
@classmethod
def get_display_name(cls):
return _("Noisy Neighbor")
@classmethod
def get_translatable_display_name(cls):
return "Noisy Neighbor"
@classmethod
def get_efficacy_specification(cls):
"""The efficacy spec for the current goal"""
return specs.Unclassified()

View File

@ -17,6 +17,7 @@
from watcher.decision_engine.strategy.strategies import basic_consolidation from watcher.decision_engine.strategy.strategies import basic_consolidation
from watcher.decision_engine.strategy.strategies import dummy_strategy from watcher.decision_engine.strategy.strategies import dummy_strategy
from watcher.decision_engine.strategy.strategies import dummy_with_scorer from watcher.decision_engine.strategy.strategies import dummy_with_scorer
from watcher.decision_engine.strategy.strategies import noisy_neighbor
from watcher.decision_engine.strategy.strategies import outlet_temp_control from watcher.decision_engine.strategy.strategies import outlet_temp_control
from watcher.decision_engine.strategy.strategies import uniform_airflow from watcher.decision_engine.strategy.strategies import uniform_airflow
from watcher.decision_engine.strategy.strategies import \ from watcher.decision_engine.strategy.strategies import \
@ -32,7 +33,8 @@ VMWorkloadConsolidation = vm_workload_consolidation.VMWorkloadConsolidation
WorkloadBalance = workload_balance.WorkloadBalance WorkloadBalance = workload_balance.WorkloadBalance
WorkloadStabilization = workload_stabilization.WorkloadStabilization WorkloadStabilization = workload_stabilization.WorkloadStabilization
UniformAirflow = uniform_airflow.UniformAirflow UniformAirflow = uniform_airflow.UniformAirflow
NoisyNeighbor = noisy_neighbor.NoisyNeighbor
__all__ = ("BasicConsolidation", "OutletTempControl", "DummyStrategy", __all__ = ("BasicConsolidation", "OutletTempControl", "DummyStrategy",
"DummyWithScorer", "VMWorkloadConsolidation", "WorkloadBalance", "DummyWithScorer", "VMWorkloadConsolidation", "WorkloadBalance",
"WorkloadStabilization", "UniformAirflow") "WorkloadStabilization", "UniformAirflow", "NoisyNeighbor")

View File

@ -328,3 +328,11 @@ class WorkloadStabilizationBaseStrategy(BaseStrategy):
@classmethod @classmethod
def get_goal_name(cls): def get_goal_name(cls):
return "workload_balancing" return "workload_balancing"
@six.add_metaclass(abc.ABCMeta)
class NoisyNeighborBaseStrategy(BaseStrategy):
@classmethod
def get_goal_name(cls):
return "noisy_neighbor"

View File

@ -0,0 +1,304 @@
# -*- encoding: utf-8 -*-
# Copyright (c) 2017 Intel Corp
#
# Authors: Prudhvi Rao Shedimbi <prudhvi.rao.shedimbi@intel.com>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from oslo_log import log
from watcher._i18n import _
from watcher.common import exception as wexc
from watcher.datasource import ceilometer as ceil
from watcher.decision_engine.strategy.strategies import base
LOG = log.getLogger(__name__)
class NoisyNeighbor(base.NoisyNeighborBaseStrategy):
MIGRATION = "migrate"
# The meter to report L3 cache in ceilometer
METER_NAME_L3 = "cpu_l3_cache"
DEFAULT_WATCHER_PRIORITY = 5
def __init__(self, config, osc=None):
"""Noisy Neighbor strategy using live migration
:param config: A mapping containing the configuration of this strategy
:type config: dict
:param osc: an OpenStackClients object, defaults to None
:type osc: :py:class:`~.OpenStackClients` instance, optional
"""
super(NoisyNeighbor, self).__init__(config, osc)
self.meter_name = self.METER_NAME_L3
self._ceilometer = None
@property
def ceilometer(self):
if self._ceilometer is None:
self._ceilometer = ceil.CeilometerHelper(osc=self.osc)
return self._ceilometer
@ceilometer.setter
def ceilometer(self, c):
self._ceilometer = c
@classmethod
def get_name(cls):
return "noisy_neighbor"
@classmethod
def get_display_name(cls):
return _("Noisy Neighbor")
@classmethod
def get_translatable_display_name(cls):
return "Noisy Neighbor"
@classmethod
def get_schema(cls):
# Mandatory default setting for each element
return {
"properties": {
"cache_threshold": {
"description": "Performance drop in L3_cache threshold "
"for migration",
"type": "number",
"default": 35.0
},
"period": {
"description": "Aggregate time period of ceilometer",
"type": "number",
"default": 100.0
},
},
}
def get_current_and_previous_cache(self, instance):
try:
current_cache = self.ceilometer.statistic_aggregation(
resource_id=instance.uuid,
meter_name=self.meter_name, period=self.period,
aggregate='avg')
previous_cache = 2 * (
self.ceilometer.statistic_aggregation(
resource_id=instance.uuid,
meter_name=self.meter_name,
period=2*self.period, aggregate='avg')) - current_cache
except Exception as exc:
LOG.exception(exc)
return None
return current_cache, previous_cache
def find_priority_instance(self, instance):
current_cache, previous_cache = \
self.get_current_and_previous_cache(instance)
if None in (current_cache, previous_cache):
LOG.warning("Ceilometer unable to pick L3 Cache "
"values. Skipping the instance")
return None
if (current_cache < (1 - (self.cache_threshold / 100.0)) *
previous_cache):
return instance
else:
return None
def find_noisy_instance(self, instance):
noisy_current_cache, noisy_previous_cache = \
self.get_current_and_previous_cache(instance)
if None in (noisy_current_cache, noisy_previous_cache):
LOG.warning("Ceilometer unable to pick "
"L3 Cache. Skipping the instance")
return None
if (noisy_current_cache > (1 + (self.cache_threshold / 100.0)) *
noisy_previous_cache):
return instance
else:
return None
def group_hosts(self):
nodes = self.compute_model.get_all_compute_nodes()
size_cluster = len(nodes)
if size_cluster == 0:
raise wexc.ClusterEmpty()
hosts_need_release = {}
hosts_target = []
for node in nodes.values():
instances_of_node = self.compute_model.get_node_instances(node)
node_instance_count = len(instances_of_node)
# Flag that tells us whether to skip the node or not. If True,
# the node is skipped. Will be true if we find a noisy instance or
# when potential priority instance will be same as potential noisy
# instance
loop_break_flag = False
if node_instance_count > 1:
instance_priority_list = []
for instance in instances_of_node:
instance_priority_list.append(instance)
# If there is no metadata regarding watcher-priority, it takes
# DEFAULT_WATCHER_PRIORITY as priority.
instance_priority_list.sort(key=lambda a: (
a.get('metadata').get('watcher-priority'),
self.DEFAULT_WATCHER_PRIORITY))
instance_priority_list_reverse = list(instance_priority_list)
instance_priority_list_reverse.reverse()
for potential_priority_instance in instance_priority_list:
priority_instance = self.find_priority_instance(
potential_priority_instance)
if (priority_instance is not None):
for potential_noisy_instance in (
instance_priority_list_reverse):
if(potential_noisy_instance ==
potential_priority_instance):
loop_break_flag = True
break
noisy_instance = self.find_noisy_instance(
potential_noisy_instance)
if noisy_instance is not None:
hosts_need_release[node.uuid] = {
'priority_vm': potential_priority_instance,
'noisy_vm': potential_noisy_instance}
LOG.debug("Priority VM found: %s" % (
potential_priority_instance.uuid))
LOG.debug("Noisy VM found: %s" % (
potential_noisy_instance.uuid))
loop_break_flag = True
break
# No need to check other instances in the node
if loop_break_flag is True:
break
if node.uuid not in hosts_need_release:
hosts_target.append(node)
return hosts_need_release, hosts_target
def calc_used_resource(self, node):
"""Calculate the used vcpus, memory and disk based on VM flavors"""
instances = self.compute_model.get_node_instances(node)
vcpus_used = 0
memory_mb_used = 0
disk_gb_used = 0
for instance in instances:
vcpus_used += instance.vcpus
memory_mb_used += instance.memory
disk_gb_used += instance.disk
return vcpus_used, memory_mb_used, disk_gb_used
def filter_dest_servers(self, hosts, instance_to_migrate):
required_cores = instance_to_migrate.vcpus
required_disk = instance_to_migrate.disk
required_memory = instance_to_migrate.memory
dest_servers = []
for host in hosts:
cores_used, mem_used, disk_used = self.calc_used_resource(host)
cores_available = host.vcpus - cores_used
disk_available = host.disk - disk_used
mem_available = host.memory - mem_used
if (cores_available >= required_cores and disk_available >=
required_disk and mem_available >= required_memory):
dest_servers.append(host)
return dest_servers
def pre_execute(self):
LOG.debug("Initializing Noisy Neighbor strategy")
if not self.compute_model:
raise wexc.ClusterStateNotDefined()
if self.compute_model.stale:
raise wexc.ClusterStateStale()
LOG.debug(self.compute_model.to_string())
def do_execute(self):
self.cache_threshold = self.input_parameters.cache_threshold
self.period = self.input_parameters.period
hosts_need_release, hosts_target = self.group_hosts()
if len(hosts_need_release) == 0:
LOG.debug("No hosts require optimization")
return
if len(hosts_target) == 0:
LOG.debug("No hosts available to migrate")
return
mig_source_node_name = max(hosts_need_release.keys(), key=lambda a:
hosts_need_release[a]['priority_vm'])
instance_to_migrate = hosts_need_release[mig_source_node_name][
'noisy_vm']
if instance_to_migrate is None:
return
dest_servers = self.filter_dest_servers(hosts_target,
instance_to_migrate)
if len(dest_servers) == 0:
LOG.info("No proper target host could be found")
return
# Destination node will be the first available node in the list.
mig_destination_node = dest_servers[0]
mig_source_node = self.compute_model.get_node_by_uuid(
mig_source_node_name)
if self.compute_model.migrate_instance(instance_to_migrate,
mig_source_node,
mig_destination_node):
parameters = {'migration_type': 'live',
'source_node': mig_source_node.uuid,
'destination_node': mig_destination_node.uuid}
self.solution.add_action(action_type=self.MIGRATION,
resource_id=instance_to_migrate.uuid,
input_parameters=parameters)
def post_execute(self):
self.solution.model = self.compute_model
LOG.debug(self.compute_model.to_string())

View File

@ -56,6 +56,41 @@ class FakeCeilometerMetrics(object):
result = self.get_average_usage_instance_cpu_wb(resource_id) result = self.get_average_usage_instance_cpu_wb(resource_id)
return result return result
def mock_get_statistics_nn(self, resource_id, meter_name, period,
aggregate='avg'):
result = 0.0
if meter_name == "cpu_l3_cache" and period == 100:
result = self.get_average_l3_cache_current(resource_id)
if meter_name == "cpu_l3_cache" and period == 200:
result = self.get_average_l3_cache_previous(resource_id)
return result
@staticmethod
def get_average_l3_cache_current(uuid):
"""The average l3 cache used by instance"""
mock = {}
mock['73b09e16-35b7-4922-804e-e8f5d9b740fc'] = 35 * oslo_utils.units.Ki
mock['cae81432-1631-4d4e-b29c-6f3acdcde906'] = 30 * oslo_utils.units.Ki
mock['INSTANCE_3'] = 40 * oslo_utils.units.Ki
mock['INSTANCE_4'] = 35 * oslo_utils.units.Ki
if uuid not in mock.keys():
mock[uuid] = 25 * oslo_utils.units.Ki
return mock[str(uuid)]
@staticmethod
def get_average_l3_cache_previous(uuid):
"""The average l3 cache used by instance"""
mock = {}
mock['73b09e16-35b7-4922-804e-e8f5d9b740fc'] = 34.5 * (
oslo_utils.units.Ki)
mock['cae81432-1631-4d4e-b29c-6f3acdcde906'] = 30.5 * (
oslo_utils.units.Ki)
mock['INSTANCE_3'] = 60 * oslo_utils.units.Ki
mock['INSTANCE_4'] = 22.5 * oslo_utils.units.Ki
if uuid not in mock.keys():
mock[uuid] = 25 * oslo_utils.units.Ki
return mock[str(uuid)]
@staticmethod @staticmethod
def get_average_outlet_temperature(uuid): def get_average_outlet_temperature(uuid):
"""The average outlet temperature for host""" """The average outlet temperature for host"""

View File

@ -1,10 +1,10 @@
<ModelRoot> <ModelRoot>
<ComputeNode human_id="" uuid="Node_0" status="enabled" state="up" id="0" hostname="hostname_0" vcpus="50" disk="250" disk_capacity="250" memory="132"> <ComputeNode human_id="" uuid="Node_0" status="enabled" state="up" id="0" hostname="hostname_0" vcpus="50" disk="250" disk_capacity="250" memory="132">
<Instance state="active" human_id="" uuid="73b09e16-35b7-4922-804e-e8f5d9b740fc" vcpus="10" disk="20" disk_capacity="20" memory="2" metadata='{"optimize": true,"top": "floor", "nested": {"x": "y"}}'/> <Instance state="active" human_id="" uuid="73b09e16-35b7-4922-804e-e8f5d9b740fc" vcpus="10" disk="20" disk_capacity="20" memory="2" metadata='{"optimize": true,"top": "floor", "nested": {"x": "y"}, "watcher-priority": "8"}'/>
<Instance state="active" human_id="" uuid="cae81432-1631-4d4e-b29c-6f3acdcde906" vcpus="15" disk="20" disk_capacity="20" memory="2" metadata='{"optimize": true,"top": "floor", "nested": {"x": "y"}}'/> <Instance state="active" human_id="" uuid="cae81432-1631-4d4e-b29c-6f3acdcde906" vcpus="15" disk="20" disk_capacity="20" memory="2" metadata='{"optimize": true,"top": "floor", "nested": {"x": "y"}, "watcher-priority": "4"}'/>
</ComputeNode> </ComputeNode>
<ComputeNode human_id="" uuid="Node_1" status="enabled" state="up" id="1" hostname="hostname_1" vcpus="50" disk="250" disk_capacity="250" memory="132"> <ComputeNode human_id="" uuid="Node_1" status="enabled" state="up" id="1" hostname="hostname_1" vcpus="50" disk="250" disk_capacity="250" memory="132">
<Instance state="active" human_id="" uuid="INSTANCE_3" vcpus="10" disk="20" disk_capacity="20" memory="2" metadata='{"optimize": true,"top": "floor", "nested": {"x": "y"}}'/> <Instance state="active" human_id="" uuid="INSTANCE_3" vcpus="10" disk="20" disk_capacity="20" memory="2" metadata='{"optimize": true,"top": "floor", "nested": {"x": "y"}, "watcher-priority": "1"}'/>
<Instance state="active" human_id="" uuid="INSTANCE_4" vcpus="10" disk="20" disk_capacity="20" memory="2" metadata='{"optimize": true,"top": "floor", "nested": {"x": "y"}}'/> <Instance state="active" human_id="" uuid="INSTANCE_4" vcpus="10" disk="20" disk_capacity="20" memory="2" metadata='{"optimize": true,"top": "floor", "nested": {"x": "y"}, "watcher-priority": "9"}'/>
</ComputeNode> </ComputeNode>
</ModelRoot> </ModelRoot>

View File

@ -0,0 +1,179 @@
# -*- encoding: utf-8 -*-
# Copyright (c) 2017 Intel Corp
#
# Authors: Prudhvi Rao Shedimbi <prudhvi.rao.shedimbi@intel.com>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import mock
from watcher.applier.loading import default
from watcher.common import exception
from watcher.common import utils
from watcher.decision_engine.model import model_root
from watcher.decision_engine.strategy import strategies
from watcher.tests import base
from watcher.tests.decision_engine.model import ceilometer_metrics
from watcher.tests.decision_engine.model import faker_cluster_state
class TestNoisyNeighbor(base.TestCase):
def setUp(self):
super(TestNoisyNeighbor, self).setUp()
# fake metrics
self.fake_metrics = ceilometer_metrics.FakeCeilometerMetrics()
# fake cluster
self.fake_cluster = faker_cluster_state.FakerModelCollector()
p_model = mock.patch.object(
strategies.NoisyNeighbor, "compute_model",
new_callable=mock.PropertyMock)
self.m_model = p_model.start()
self.addCleanup(p_model.stop)
p_ceilometer = mock.patch.object(
strategies.NoisyNeighbor, "ceilometer",
new_callable=mock.PropertyMock)
self.m_ceilometer = p_ceilometer.start()
self.addCleanup(p_ceilometer.stop)
p_audit_scope = mock.patch.object(
strategies.NoisyNeighbor, "audit_scope",
new_callable=mock.PropertyMock
)
self.m_audit_scope = p_audit_scope.start()
self.addCleanup(p_audit_scope.stop)
self.m_audit_scope.return_value = mock.Mock()
self.m_model.return_value = model_root.ModelRoot()
self.m_ceilometer.return_value = mock.Mock(
statistic_aggregation=self.fake_metrics.mock_get_statistics_nn)
self.strategy = strategies.NoisyNeighbor(config=mock.Mock())
self.strategy.input_parameters = utils.Struct()
self.strategy.input_parameters.update({'cache_threshold': 35})
self.strategy.threshold = 35
self.strategy.input_parameters.update({'period': 100})
self.strategy.threshold = 100
def test_calc_used_resource(self):
model = self.fake_cluster.generate_scenario_3_with_2_nodes()
self.m_model.return_value = model
node = model.get_node_by_uuid('Node_0')
cores_used, mem_used, disk_used = self.strategy.calc_used_resource(
node)
self.assertEqual((10, 2, 20), (cores_used, mem_used, disk_used))
def test_group_hosts(self):
self.strategy.cache_threshold = 35
self.strategy.period = 100
model = self.fake_cluster.generate_scenario_7_with_2_nodes()
self.m_model.return_value = model
node_uuid = 'Node_1'
n1, n2 = self.strategy.group_hosts()
self.assertTrue(node_uuid in n1)
self.assertEqual(n1[node_uuid]['priority_vm'].uuid, 'INSTANCE_3')
self.assertEqual(n1[node_uuid]['noisy_vm'].uuid, 'INSTANCE_4')
self.assertEqual('Node_0', n2[0].uuid)
def test_find_priority_instance(self):
self.strategy.cache_threshold = 35
self.strategy.period = 100
model = self.fake_cluster.generate_scenario_7_with_2_nodes()
self.m_model.return_value = model
potential_prio_inst = model.get_instance_by_uuid('INSTANCE_3')
inst_res = self.strategy.find_priority_instance(potential_prio_inst)
self.assertEqual('INSTANCE_3', inst_res.uuid)
def test_find_noisy_instance(self):
self.strategy.cache_threshold = 35
self.strategy.period = 100
model = self.fake_cluster.generate_scenario_7_with_2_nodes()
self.m_model.return_value = model
potential_noisy_inst = model.get_instance_by_uuid('INSTANCE_4')
inst_res = self.strategy.find_noisy_instance(potential_noisy_inst)
self.assertEqual('INSTANCE_4', inst_res.uuid)
def test_filter_destination_hosts(self):
model = self.fake_cluster.generate_scenario_7_with_2_nodes()
self.m_model.return_value = model
self.strategy.cache_threshold = 35
self.strategy.period = 100
n1, n2 = self.strategy.group_hosts()
mig_source_node = max(n1.keys(), key=lambda a:
n1[a]['priority_vm'])
instance_to_mig = n1[mig_source_node]['noisy_vm']
dest_hosts = self.strategy.filter_dest_servers(
n2, instance_to_mig)
self.assertEqual(1, len(dest_hosts))
self.assertEqual('Node_0', dest_hosts[0].uuid)
def test_exception_model(self):
self.m_model.return_value = None
self.assertRaises(
exception.ClusterStateNotDefined, self.strategy.execute)
def test_exception_cluster_empty(self):
model = model_root.ModelRoot()
self.m_model.return_value = model
self.assertRaises(exception.ClusterEmpty, self.strategy.execute)
def test_exception_stale_cdm(self):
self.fake_cluster.set_cluster_data_model_as_stale()
self.m_model.return_value = self.fake_cluster.cluster_data_model
self.assertRaises(
exception.ClusterStateNotDefined,
self.strategy.execute)
def test_execute_cluster_empty(self):
model = model_root.ModelRoot()
self.m_model.return_value = model
self.assertRaises(exception.ClusterEmpty, self.strategy.execute)
def test_execute_no_workload(self):
self.strategy.cache_threshold = 35
self.strategy.period = 100
model = self.fake_cluster.generate_scenario_4_with_1_node_no_instance()
self.m_model.return_value = model
solution = self.strategy.execute()
self.assertEqual([], solution.actions)
def test_execute(self):
self.strategy.cache_threshold = 35
self.strategy.period = 100
model = self.fake_cluster.generate_scenario_7_with_2_nodes()
self.m_model.return_value = model
solution = self.strategy.execute()
actions_counter = collections.Counter(
[action.get('action_type') for action in solution.actions])
num_migrations = actions_counter.get("migrate", 0)
self.assertEqual(1, num_migrations)
def test_check_parameters(self):
model = self.fake_cluster.generate_scenario_3_with_2_nodes()
self.m_model.return_value = model
solution = self.strategy.execute()
loader = default.DefaultActionLoader()
for action in solution.actions:
loaded_action = loader.load(action['action_type'])
loaded_action.input_parameters = action['input_parameters']
loaded_action.validate_parameters()