Multi datasource support for Basic Consolidation
In this changeset, I added the support for both Monasca and Ceilometer for the basic_consolidation strategy. Partially Implements: blueprint monasca-support Change-Id: Ide98550fbf4a29954e46650190a05be1b8800317
This commit is contained in:
parent
a015af1bd2
commit
4235ef7c24
@ -245,22 +245,30 @@ Querying metrics
|
||||
|
||||
A large set of metrics, generated by OpenStack modules, can be used in your
|
||||
strategy implementation. To collect these metrics, Watcher provides a
|
||||
`Helper`_ to the Ceilometer API, which makes this API reusable and easier
|
||||
to used.
|
||||
`Helper`_ for two data sources which are `Ceilometer`_ and `Monasca`_. If you
|
||||
wish to query metrics from a different data source, you can implement your own
|
||||
and directly use it from within your new strategy. Indeed, strategies in
|
||||
Watcher have the cluster data models decoupled from the data sources which
|
||||
means that you may keep the former while changing the latter.
|
||||
The recommended way for you to support a new data source is to implement a new
|
||||
helper that would encapsulate within separate methods the queries you need to
|
||||
perform. To then use it, you would just have to instantiate it within your
|
||||
strategy.
|
||||
|
||||
If you want to use your own metrics database backend, please refer to the
|
||||
`Ceilometer developer guide`_. Indeed, Ceilometer's pluggable model allows
|
||||
for various types of backends. A list of the available backends is located
|
||||
here_. The Ceilosca project is a good example of how to create your own
|
||||
pluggable backend.
|
||||
If you want to use Ceilometer but with your own metrics database backend,
|
||||
please refer to the `Ceilometer developer guide`_. The list of the available
|
||||
Ceilometer backends is located here_. The `Ceilosca`_ project is a good example
|
||||
of how to create your own pluggable backend. Moreover, if your strategy
|
||||
requires new metrics not covered by Ceilometer, you can add them through a
|
||||
`Ceilometer plugin`_.
|
||||
|
||||
Finally, if your strategy requires new metrics not covered by Ceilometer, you
|
||||
can add them through a Ceilometer `plugin`_.
|
||||
|
||||
.. _`Helper`: https://github.com/openstack/watcher/blob/master/watcher/decision_engine/cluster/history/ceilometer.py
|
||||
.. _`Ceilometer developer guide`: http://docs.openstack.org/developer/ceilometer/architecture.html#storing-the-data
|
||||
.. _`Ceilometer`: http://docs.openstack.org/developer/ceilometer/
|
||||
.. _`Monasca`: https://github.com/openstack/monasca-api/blob/master/docs/monasca-api-spec.md
|
||||
.. _`here`: http://docs.openstack.org/developer/ceilometer/install/dbreco.html#choosing-a-database-backend
|
||||
.. _`plugin`: http://docs.openstack.org/developer/ceilometer/plugins.html
|
||||
.. _`Ceilometer plugin`: http://docs.openstack.org/developer/ceilometer/plugins.html
|
||||
.. _`Ceilosca`: https://github.com/openstack/monasca-ceilometer/blob/master/ceilosca/ceilometer/storage/impl_monasca.py
|
||||
|
||||
|
||||
|
@ -368,6 +368,11 @@ class NoMetricValuesForInstance(WatcherException):
|
||||
msg_fmt = _("No values returned by %(resource_id)s for %(metric_name)s.")
|
||||
|
||||
|
||||
class UnsupportedDataSource(UnsupportedError):
|
||||
msg_fmt = _("Datasource %(datasource)s is not supported "
|
||||
"by strategy %(strategy)s")
|
||||
|
||||
|
||||
class NoSuchMetricForHost(WatcherException):
|
||||
msg_fmt = _("No %(metric)s metric for %(host)s found.")
|
||||
|
||||
|
@ -35,11 +35,13 @@ migration is possible on your OpenStack cluster.
|
||||
|
||||
"""
|
||||
|
||||
from oslo_config import cfg
|
||||
from oslo_log import log
|
||||
|
||||
from watcher._i18n import _, _LE, _LI, _LW
|
||||
from watcher.common import exception
|
||||
from watcher.datasource import ceilometer as ceil
|
||||
from watcher.datasource import monasca as mon
|
||||
from watcher.decision_engine.model import element
|
||||
from watcher.decision_engine.strategy.strategies import base
|
||||
|
||||
@ -52,6 +54,15 @@ class BasicConsolidation(base.ServerConsolidationBaseStrategy):
|
||||
HOST_CPU_USAGE_METRIC_NAME = 'compute.node.cpu.percent'
|
||||
INSTANCE_CPU_USAGE_METRIC_NAME = 'cpu_util'
|
||||
|
||||
METRIC_NAMES = dict(
|
||||
ceilometer=dict(
|
||||
host_cpu_usage='compute.node.cpu.percent',
|
||||
instance_cpu_usage='cpu_util'),
|
||||
monasca=dict(
|
||||
host_cpu_usage='cpu.percent',
|
||||
instance_cpu_usage='vm.cpu.utilization_perc'),
|
||||
)
|
||||
|
||||
MIGRATION = "migrate"
|
||||
CHANGE_NOVA_SERVICE_STATE = "change_nova_service_state"
|
||||
|
||||
@ -73,6 +84,7 @@ class BasicConsolidation(base.ServerConsolidationBaseStrategy):
|
||||
self.efficacy = 100
|
||||
|
||||
self._ceilometer = None
|
||||
self._monasca = None
|
||||
|
||||
# TODO(jed): improve threshold overbooking?
|
||||
self.threshold_mem = 1
|
||||
@ -111,6 +123,16 @@ class BasicConsolidation(base.ServerConsolidationBaseStrategy):
|
||||
},
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_config_opts(cls):
|
||||
return [
|
||||
cfg.StrOpt(
|
||||
"datasource",
|
||||
help="Data source to use in order to query the needed metrics",
|
||||
default="ceilometer",
|
||||
choices=["ceilometer", "monasca"]),
|
||||
]
|
||||
|
||||
@property
|
||||
def ceilometer(self):
|
||||
if self._ceilometer is None:
|
||||
@ -121,6 +143,16 @@ class BasicConsolidation(base.ServerConsolidationBaseStrategy):
|
||||
def ceilometer(self, ceilometer):
|
||||
self._ceilometer = ceilometer
|
||||
|
||||
@property
|
||||
def monasca(self):
|
||||
if self._monasca is None:
|
||||
self._monasca = mon.MonascaHelper(osc=self.osc)
|
||||
return self._monasca
|
||||
|
||||
@monasca.setter
|
||||
def monasca(self, monasca):
|
||||
self._monasca = monasca
|
||||
|
||||
def check_migration(self, source_node, destination_node,
|
||||
instance_to_migrate):
|
||||
"""Check if the migration is possible
|
||||
@ -221,6 +253,64 @@ class BasicConsolidation(base.ServerConsolidationBaseStrategy):
|
||||
# TODO(jed): take in account weight
|
||||
return (score_cores + score_disk + score_memory) / 3
|
||||
|
||||
def get_node_cpu_usage(self, node):
|
||||
metric_name = self.METRIC_NAMES[
|
||||
self.config.datasource]['host_cpu_usage']
|
||||
if self.config.datasource == "ceilometer":
|
||||
resource_id = "%s_%s" % (node.uuid, node.hostname)
|
||||
return self.ceilometer.statistic_aggregation(
|
||||
resource_id=resource_id,
|
||||
meter_name=metric_name,
|
||||
period="7200",
|
||||
aggregate='avg',
|
||||
)
|
||||
elif self.config.datasource == "monasca":
|
||||
statistics = self.monasca.statistic_aggregation(
|
||||
meter_name=metric_name,
|
||||
dimensions=dict(hostname=node.uuid),
|
||||
period=7200,
|
||||
aggregate='avg'
|
||||
)
|
||||
cpu_usage = None
|
||||
for stat in statistics:
|
||||
avg_col_idx = stat['columns'].index('avg')
|
||||
values = [r[avg_col_idx] for r in stat['statistics']]
|
||||
value = float(sum(values)) / len(values)
|
||||
cpu_usage = value
|
||||
|
||||
return cpu_usage
|
||||
|
||||
raise exception.UnsupportedDataSource(
|
||||
strategy=self.name, datasource=self.config.datasource)
|
||||
|
||||
def get_instance_cpu_usage(self, instance):
|
||||
metric_name = self.METRIC_NAMES[
|
||||
self.config.datasource]['instance_cpu_usage']
|
||||
if self.config.datasource == "ceilometer":
|
||||
return self.ceilometer.statistic_aggregation(
|
||||
resource_id=instance.uuid,
|
||||
meter_name=metric_name,
|
||||
period="7200",
|
||||
aggregate='avg'
|
||||
)
|
||||
elif self.config.datasource == "monasca":
|
||||
statistics = self.monasca.statistic_aggregation(
|
||||
meter_name=metric_name,
|
||||
dimensions=dict(resource_id=instance.uuid),
|
||||
period=7200,
|
||||
aggregate='avg'
|
||||
)
|
||||
cpu_usage = None
|
||||
for stat in statistics:
|
||||
avg_col_idx = stat['columns'].index('avg')
|
||||
values = [r[avg_col_idx] for r in stat['statistics']]
|
||||
value = float(sum(values)) / len(values)
|
||||
cpu_usage = value
|
||||
return cpu_usage
|
||||
|
||||
raise exception.UnsupportedDataSource(
|
||||
strategy=self.name, datasource=self.config.datasource)
|
||||
|
||||
def calculate_score_node(self, node):
|
||||
"""Calculate the score that represent the utilization level
|
||||
|
||||
@ -228,19 +318,16 @@ class BasicConsolidation(base.ServerConsolidationBaseStrategy):
|
||||
:return: Score for the given compute node
|
||||
:rtype: float
|
||||
"""
|
||||
resource_id = "%s_%s" % (node.uuid, node.hostname)
|
||||
host_avg_cpu_util = self.ceilometer.statistic_aggregation(
|
||||
resource_id=resource_id,
|
||||
meter_name=self.HOST_CPU_USAGE_METRIC_NAME,
|
||||
period="7200",
|
||||
aggregate='avg')
|
||||
host_avg_cpu_util = self.get_node_cpu_usage(node)
|
||||
|
||||
if host_avg_cpu_util is None:
|
||||
resource_id = "%s_%s" % (node.uuid, node.hostname)
|
||||
LOG.error(
|
||||
_LE("No values returned by %(resource_id)s "
|
||||
"for %(metric_name)s") % dict(
|
||||
resource_id=resource_id,
|
||||
metric_name=self.HOST_CPU_USAGE_METRIC_NAME))
|
||||
metric_name=self.METRIC_NAMES[
|
||||
self.config.datasource]['host_cpu_usage']))
|
||||
host_avg_cpu_util = 100
|
||||
|
||||
cpu_capacity = self.compute_model.get_resource_by_uuid(
|
||||
@ -253,7 +340,7 @@ class BasicConsolidation(base.ServerConsolidationBaseStrategy):
|
||||
def calculate_migration_efficacy(self):
|
||||
"""Calculate migration efficacy
|
||||
|
||||
:return: The efficacy tells us that every VM migration resulted
|
||||
:return: The efficacy tells us that every instance migration resulted
|
||||
in releasing on node
|
||||
"""
|
||||
if self.number_of_migrations > 0:
|
||||
@ -268,19 +355,14 @@ class BasicConsolidation(base.ServerConsolidationBaseStrategy):
|
||||
:param instance: the virtual machine
|
||||
:return: score
|
||||
"""
|
||||
instance_cpu_utilization = self.ceilometer. \
|
||||
statistic_aggregation(
|
||||
resource_id=instance.uuid,
|
||||
meter_name=self.INSTANCE_CPU_USAGE_METRIC_NAME,
|
||||
period="7200",
|
||||
aggregate='avg'
|
||||
)
|
||||
instance_cpu_utilization = self.get_instance_cpu_usage(instance)
|
||||
if instance_cpu_utilization is None:
|
||||
LOG.error(
|
||||
_LE("No values returned by %(resource_id)s "
|
||||
"for %(metric_name)s") % dict(
|
||||
resource_id=instance.uuid,
|
||||
metric_name=self.INSTANCE_CPU_USAGE_METRIC_NAME))
|
||||
metric_name=self.METRIC_NAMES[
|
||||
self.config.datasource]['instance_cpu_usage']))
|
||||
instance_cpu_utilization = 100
|
||||
|
||||
cpu_capacity = self.compute_model.get_resource_by_uuid(
|
||||
|
@ -16,12 +16,10 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
|
||||
import oslo_utils
|
||||
|
||||
|
||||
class FakerMetricsCollector(object):
|
||||
class FakeCeilometerMetrics(object):
|
||||
def __init__(self):
|
||||
self.emptytype = ""
|
||||
|
||||
@ -46,19 +44,20 @@ class FakerMetricsCollector(object):
|
||||
elif meter_name == "hardware.ipmi.node.airflow":
|
||||
result = self.get_average_airflow(resource_id)
|
||||
elif meter_name == "hardware.ipmi.node.temperature":
|
||||
result = self.get_average_inletT(resource_id)
|
||||
result = self.get_average_inlet_t(resource_id)
|
||||
elif meter_name == "hardware.ipmi.node.power":
|
||||
result = self.get_average_power(resource_id)
|
||||
return result
|
||||
|
||||
def mock_get_statistics_wb(self, resource_id, meter_name, period,
|
||||
aggregate='avg'):
|
||||
result = 0
|
||||
result = 0.0
|
||||
if meter_name == "cpu_util":
|
||||
result = self.get_average_usage_instance_cpu_wb(resource_id)
|
||||
return result
|
||||
|
||||
def get_average_outlet_temperature(self, uuid):
|
||||
@staticmethod
|
||||
def get_average_outlet_temperature(uuid):
|
||||
"""The average outlet temperature for host"""
|
||||
mock = {}
|
||||
mock['Node_0'] = 30
|
||||
@ -68,14 +67,15 @@ class FakerMetricsCollector(object):
|
||||
mock[uuid] = 100
|
||||
return mock[str(uuid)]
|
||||
|
||||
def get_usage_node_ram(self, uuid):
|
||||
@staticmethod
|
||||
def get_usage_node_ram(uuid):
|
||||
mock = {}
|
||||
# Ceilometer returns hardware.memory.used samples in KB.
|
||||
mock['Node_0'] = 7*oslo_utils.units.Ki
|
||||
mock['Node_1'] = 5*oslo_utils.units.Ki
|
||||
mock['Node_2'] = 29*oslo_utils.units.Ki
|
||||
mock['Node_3'] = 8*oslo_utils.units.Ki
|
||||
mock['Node_4'] = 4*oslo_utils.units.Ki
|
||||
mock['Node_0'] = 7 * oslo_utils.units.Ki
|
||||
mock['Node_1'] = 5 * oslo_utils.units.Ki
|
||||
mock['Node_2'] = 29 * oslo_utils.units.Ki
|
||||
mock['Node_3'] = 8 * oslo_utils.units.Ki
|
||||
mock['Node_4'] = 4 * oslo_utils.units.Ki
|
||||
|
||||
if uuid not in mock.keys():
|
||||
# mock[uuid] = random.randint(1, 4)
|
||||
@ -83,7 +83,8 @@ class FakerMetricsCollector(object):
|
||||
|
||||
return float(mock[str(uuid)])
|
||||
|
||||
def get_average_airflow(self, uuid):
|
||||
@staticmethod
|
||||
def get_average_airflow(uuid):
|
||||
"""The average outlet temperature for host"""
|
||||
mock = {}
|
||||
mock['Node_0'] = 400
|
||||
@ -93,7 +94,8 @@ class FakerMetricsCollector(object):
|
||||
mock[uuid] = 200
|
||||
return mock[str(uuid)]
|
||||
|
||||
def get_average_inletT(self, uuid):
|
||||
@staticmethod
|
||||
def get_average_inlet_t(uuid):
|
||||
"""The average outlet temperature for host"""
|
||||
mock = {}
|
||||
mock['Node_0'] = 24
|
||||
@ -102,7 +104,8 @@ class FakerMetricsCollector(object):
|
||||
mock[uuid] = 28
|
||||
return mock[str(uuid)]
|
||||
|
||||
def get_average_power(self, uuid):
|
||||
@staticmethod
|
||||
def get_average_power(uuid):
|
||||
"""The average outlet temperature for host"""
|
||||
mock = {}
|
||||
mock['Node_0'] = 260
|
||||
@ -111,7 +114,8 @@ class FakerMetricsCollector(object):
|
||||
mock[uuid] = 200
|
||||
return mock[str(uuid)]
|
||||
|
||||
def get_usage_node_cpu(self, uuid):
|
||||
@staticmethod
|
||||
def get_usage_node_cpu(uuid):
|
||||
"""The last VM CPU usage values to average
|
||||
|
||||
:param uuid:00
|
||||
@ -151,7 +155,8 @@ class FakerMetricsCollector(object):
|
||||
|
||||
return float(mock[str(uuid)])
|
||||
|
||||
def get_average_usage_instance_cpu_wb(self, uuid):
|
||||
@staticmethod
|
||||
def get_average_usage_instance_cpu_wb(uuid):
|
||||
"""The last VM CPU usage values to average
|
||||
|
||||
:param uuid:00
|
||||
@ -171,7 +176,8 @@ class FakerMetricsCollector(object):
|
||||
mock['INSTANCE_4'] = 10
|
||||
return float(mock[str(uuid)])
|
||||
|
||||
def get_average_usage_instance_cpu(self, uuid):
|
||||
@staticmethod
|
||||
def get_average_usage_instance_cpu(uuid):
|
||||
"""The last VM CPU usage values to average
|
||||
|
||||
:param uuid:00
|
||||
@ -204,7 +210,8 @@ class FakerMetricsCollector(object):
|
||||
|
||||
return mock[str(uuid)]
|
||||
|
||||
def get_average_usage_instance_memory(self, uuid):
|
||||
@staticmethod
|
||||
def get_average_usage_instance_memory(uuid):
|
||||
mock = {}
|
||||
# node 0
|
||||
mock['INSTANCE_0'] = 2
|
||||
@ -227,7 +234,8 @@ class FakerMetricsCollector(object):
|
||||
|
||||
return mock[str(uuid)]
|
||||
|
||||
def get_average_usage_instance_disk(self, uuid):
|
||||
@staticmethod
|
||||
def get_average_usage_instance_disk(uuid):
|
||||
mock = {}
|
||||
# node 0
|
||||
mock['INSTANCE_0'] = 2
|
||||
@ -250,6 +258,3 @@ class FakerMetricsCollector(object):
|
||||
mock[uuid] = 4
|
||||
|
||||
return mock[str(uuid)]
|
||||
|
||||
def get_virtual_machine_capacity(self, instance_uuid):
|
||||
return random.randint(1, 4)
|
@ -102,12 +102,11 @@ class FakeCeilometerMetrics(object):
|
||||
Returns relative node CPU utilization <0, 100>.
|
||||
:param r_id: resource id
|
||||
"""
|
||||
|
||||
id = '%s_%s' % (r_id.split('_')[0], r_id.split('_')[1])
|
||||
instances = self.model.get_mapping().get_node_instances_by_uuid(id)
|
||||
uuid = '%s_%s' % (r_id.split('_')[0], r_id.split('_')[1])
|
||||
instances = self.model.get_mapping().get_node_instances_by_uuid(uuid)
|
||||
util_sum = 0.0
|
||||
node_cpu_cores = self.model.get_resource_by_uuid(
|
||||
element.ResourceType.cpu_cores).get_capacity_by_uuid(id)
|
||||
element.ResourceType.cpu_cores).get_capacity_by_uuid(uuid)
|
||||
for instance_uuid in instances:
|
||||
instance_cpu_cores = self.model.get_resource_by_uuid(
|
||||
element.ResourceType.cpu_cores).\
|
||||
@ -118,7 +117,8 @@ class FakeCeilometerMetrics(object):
|
||||
util_sum /= node_cpu_cores
|
||||
return util_sum * 100.0
|
||||
|
||||
def get_instance_cpu_util(self, r_id):
|
||||
@staticmethod
|
||||
def get_instance_cpu_util(r_id):
|
||||
instance_cpu_util = dict()
|
||||
instance_cpu_util['INSTANCE_0'] = 10
|
||||
instance_cpu_util['INSTANCE_1'] = 30
|
||||
@ -132,7 +132,8 @@ class FakeCeilometerMetrics(object):
|
||||
instance_cpu_util['INSTANCE_9'] = 100
|
||||
return instance_cpu_util[str(r_id)]
|
||||
|
||||
def get_instance_ram_util(self, r_id):
|
||||
@staticmethod
|
||||
def get_instance_ram_util(r_id):
|
||||
instance_ram_util = dict()
|
||||
instance_ram_util['INSTANCE_0'] = 1
|
||||
instance_ram_util['INSTANCE_1'] = 2
|
||||
@ -146,7 +147,8 @@ class FakeCeilometerMetrics(object):
|
||||
instance_ram_util['INSTANCE_9'] = 8
|
||||
return instance_ram_util[str(r_id)]
|
||||
|
||||
def get_instance_disk_root_size(self, r_id):
|
||||
@staticmethod
|
||||
def get_instance_disk_root_size(r_id):
|
||||
instance_disk_util = dict()
|
||||
instance_disk_util['INSTANCE_0'] = 10
|
||||
instance_disk_util['INSTANCE_1'] = 15
|
||||
|
267
watcher/tests/decision_engine/model/monasca_metrics.py
Normal file
267
watcher/tests/decision_engine/model/monasca_metrics.py
Normal file
@ -0,0 +1,267 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
# Copyright (c) 2015 b<>com
|
||||
#
|
||||
# Authors: Jean-Emile DARTOIS <jean-emile.dartois@b-com.com>
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
# implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import oslo_utils
|
||||
|
||||
|
||||
class FakeMonascaMetrics(object):
|
||||
def __init__(self):
|
||||
self.emptytype = ""
|
||||
|
||||
def empty_one_metric(self, emptytype):
|
||||
self.emptytype = emptytype
|
||||
|
||||
def mock_get_statistics(self, meter_name, dimensions, period,
|
||||
aggregate='avg'):
|
||||
resource_id = dimensions.get(
|
||||
"resource_id") or dimensions.get("hostname")
|
||||
result = 0.0
|
||||
if meter_name == "cpu.percent":
|
||||
result = self.get_usage_node_cpu(resource_id)
|
||||
elif meter_name == "vm.cpu.utilization_perc":
|
||||
result = self.get_average_usage_instance_cpu(resource_id)
|
||||
# elif meter_name == "hardware.memory.used":
|
||||
# result = self.get_usage_node_ram(resource_id)
|
||||
# elif meter_name == "memory.resident":
|
||||
# result = self.get_average_usage_instance_memory(resource_id)
|
||||
# elif meter_name == "hardware.ipmi.node.outlet_temperature":
|
||||
# result = self.get_average_outlet_temperature(resource_id)
|
||||
# elif meter_name == "hardware.ipmi.node.airflow":
|
||||
# result = self.get_average_airflow(resource_id)
|
||||
# elif meter_name == "hardware.ipmi.node.temperature":
|
||||
# result = self.get_average_inlet_t(resource_id)
|
||||
# elif meter_name == "hardware.ipmi.node.power":
|
||||
# result = self.get_average_power(resource_id)
|
||||
return result
|
||||
|
||||
def mock_get_statistics_wb(self, meter_name, dimensions, period,
|
||||
aggregate='avg'):
|
||||
resource_id = dimensions.get(
|
||||
"resource_id") or dimensions.get("hostname")
|
||||
result = 0.0
|
||||
if meter_name == "vm.cpu.utilization_perc":
|
||||
result = self.get_average_usage_instance_cpu_wb(resource_id)
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def get_average_outlet_temperature(uuid):
|
||||
"""The average outlet temperature for host"""
|
||||
measurements = {}
|
||||
measurements['Node_0'] = 30
|
||||
# use a big value to make sure it exceeds threshold
|
||||
measurements['Node_1'] = 100
|
||||
if uuid not in measurements.keys():
|
||||
measurements[uuid] = 100
|
||||
return [{'columns': ['avg'],
|
||||
'statistics': [[float(measurements[str(uuid)])]]}]
|
||||
|
||||
@staticmethod
|
||||
def get_usage_node_ram(uuid):
|
||||
measurements = {}
|
||||
# Monasca returns hardware.memory.used samples in KB.
|
||||
measurements['Node_0'] = 7 * oslo_utils.units.Ki
|
||||
measurements['Node_1'] = 5 * oslo_utils.units.Ki
|
||||
measurements['Node_2'] = 29 * oslo_utils.units.Ki
|
||||
measurements['Node_3'] = 8 * oslo_utils.units.Ki
|
||||
measurements['Node_4'] = 4 * oslo_utils.units.Ki
|
||||
|
||||
if uuid not in measurements.keys():
|
||||
# measurements[uuid] = random.randint(1, 4)
|
||||
measurements[uuid] = 8
|
||||
|
||||
return float(measurements[str(uuid)])
|
||||
|
||||
@staticmethod
|
||||
def get_average_airflow(uuid):
|
||||
"""The average outlet temperature for host"""
|
||||
measurements = {}
|
||||
measurements['Node_0'] = 400
|
||||
# use a big value to make sure it exceeds threshold
|
||||
measurements['Node_1'] = 100
|
||||
if uuid not in measurements.keys():
|
||||
measurements[uuid] = 200
|
||||
return [{'columns': ['avg'],
|
||||
'statistics': [[float(measurements[str(uuid)])]]}]
|
||||
|
||||
@staticmethod
|
||||
def get_average_inlet_t(uuid):
|
||||
"""The average outlet temperature for host"""
|
||||
measurements = {}
|
||||
measurements['Node_0'] = 24
|
||||
measurements['Node_1'] = 26
|
||||
if uuid not in measurements.keys():
|
||||
measurements[uuid] = 28
|
||||
return [{'columns': ['avg'],
|
||||
'statistics': [[float(measurements[str(uuid)])]]}]
|
||||
|
||||
@staticmethod
|
||||
def get_average_power(uuid):
|
||||
"""The average outlet temperature for host"""
|
||||
measurements = {}
|
||||
measurements['Node_0'] = 260
|
||||
measurements['Node_1'] = 240
|
||||
if uuid not in measurements.keys():
|
||||
measurements[uuid] = 200
|
||||
return [{'columns': ['avg'],
|
||||
'statistics': [[float(measurements[str(uuid)])]]}]
|
||||
|
||||
@staticmethod
|
||||
def get_usage_node_cpu(uuid):
|
||||
"""The last VM CPU usage values to average
|
||||
|
||||
:param uuid:00
|
||||
:return:
|
||||
"""
|
||||
# query influxdb stream
|
||||
|
||||
# compute in stream
|
||||
|
||||
# Normalize
|
||||
measurements = {}
|
||||
# node 0
|
||||
measurements['Node_0'] = 7
|
||||
measurements['Node_1'] = 7
|
||||
# node 1
|
||||
measurements['Node_2'] = 80
|
||||
# node 2
|
||||
measurements['Node_3'] = 5
|
||||
measurements['Node_4'] = 5
|
||||
measurements['Node_5'] = 10
|
||||
|
||||
# node 3
|
||||
measurements['Node_6'] = 8
|
||||
measurements['Node_19'] = 10
|
||||
# node 4
|
||||
measurements['INSTANCE_7'] = 4
|
||||
|
||||
if uuid not in measurements.keys():
|
||||
# measurements[uuid] = random.randint(1, 4)
|
||||
measurements[uuid] = 8
|
||||
|
||||
# import ipdb; ipdb.set_trace()
|
||||
return [{'columns': ['avg'],
|
||||
'statistics': [[float(measurements[str(uuid)])]]}]
|
||||
# return float(measurements[str(uuid)])
|
||||
|
||||
@staticmethod
|
||||
def get_average_usage_instance_cpu_wb(uuid):
|
||||
"""The last VM CPU usage values to average
|
||||
|
||||
:param uuid:00
|
||||
:return:
|
||||
"""
|
||||
# query influxdb stream
|
||||
|
||||
# compute in stream
|
||||
|
||||
# Normalize
|
||||
measurements = {}
|
||||
# node 0
|
||||
measurements['INSTANCE_1'] = 80
|
||||
measurements['73b09e16-35b7-4922-804e-e8f5d9b740fc'] = 50
|
||||
# node 1
|
||||
measurements['INSTANCE_3'] = 20
|
||||
measurements['INSTANCE_4'] = 10
|
||||
return [{'columns': ['avg'],
|
||||
'statistics': [[float(measurements[str(uuid)])]]}]
|
||||
|
||||
@staticmethod
|
||||
def get_average_usage_instance_cpu(uuid):
|
||||
"""The last VM CPU usage values to average
|
||||
|
||||
:param uuid:00
|
||||
:return:
|
||||
"""
|
||||
# query influxdb stream
|
||||
|
||||
# compute in stream
|
||||
|
||||
# Normalize
|
||||
measurements = {}
|
||||
# node 0
|
||||
measurements['INSTANCE_0'] = 7
|
||||
measurements['INSTANCE_1'] = 7
|
||||
# node 1
|
||||
measurements['INSTANCE_2'] = 10
|
||||
# node 2
|
||||
measurements['INSTANCE_3'] = 5
|
||||
measurements['INSTANCE_4'] = 5
|
||||
measurements['INSTANCE_5'] = 10
|
||||
|
||||
# node 3
|
||||
measurements['INSTANCE_6'] = 8
|
||||
|
||||
# node 4
|
||||
measurements['INSTANCE_7'] = 4
|
||||
if uuid not in measurements.keys():
|
||||
# measurements[uuid] = random.randint(1, 4)
|
||||
measurements[uuid] = 8
|
||||
|
||||
return [{'columns': ['avg'],
|
||||
'statistics': [[float(measurements[str(uuid)])]]}]
|
||||
|
||||
@staticmethod
|
||||
def get_average_usage_instance_memory(uuid):
|
||||
measurements = {}
|
||||
# node 0
|
||||
measurements['INSTANCE_0'] = 2
|
||||
measurements['INSTANCE_1'] = 5
|
||||
# node 1
|
||||
measurements['INSTANCE_2'] = 5
|
||||
# node 2
|
||||
measurements['INSTANCE_3'] = 8
|
||||
measurements['INSTANCE_4'] = 5
|
||||
measurements['INSTANCE_5'] = 16
|
||||
|
||||
# node 3
|
||||
measurements['INSTANCE_6'] = 8
|
||||
|
||||
# node 4
|
||||
measurements['INSTANCE_7'] = 4
|
||||
if uuid not in measurements.keys():
|
||||
# measurements[uuid] = random.randint(1, 4)
|
||||
measurements[uuid] = 10
|
||||
|
||||
return [{'columns': ['avg'],
|
||||
'statistics': [[float(measurements[str(uuid)])]]}]
|
||||
|
||||
@staticmethod
|
||||
def get_average_usage_instance_disk(uuid):
|
||||
measurements = {}
|
||||
# node 0
|
||||
measurements['INSTANCE_0'] = 2
|
||||
measurements['INSTANCE_1'] = 2
|
||||
# node 1
|
||||
measurements['INSTANCE_2'] = 2
|
||||
# node 2
|
||||
measurements['INSTANCE_3'] = 10
|
||||
measurements['INSTANCE_4'] = 15
|
||||
measurements['INSTANCE_5'] = 20
|
||||
|
||||
# node 3
|
||||
measurements['INSTANCE_6'] = 8
|
||||
|
||||
# node 4
|
||||
measurements['INSTANCE_7'] = 4
|
||||
|
||||
if uuid not in measurements.keys():
|
||||
# measurements[uuid] = random.randint(1, 4)
|
||||
measurements[uuid] = 4
|
||||
|
||||
return [{'columns': ['avg'],
|
||||
'statistics': [[float(measurements[str(uuid)])]]}]
|
@ -24,35 +24,37 @@ from watcher.decision_engine.strategy import strategies
|
||||
from watcher import objects
|
||||
from watcher.tests.db import base
|
||||
from watcher.tests.db import utils as db_utils
|
||||
from watcher.tests.decision_engine.model import ceilometer_metrics as fake
|
||||
from watcher.tests.decision_engine.model import faker_cluster_state
|
||||
from watcher.tests.decision_engine.model import faker_metrics_collector as fake
|
||||
from watcher.tests.objects import utils as obj_utils
|
||||
|
||||
|
||||
class SolutionFaker(object):
|
||||
@staticmethod
|
||||
def build():
|
||||
metrics = fake.FakerMetricsCollector()
|
||||
metrics = fake.FakeCeilometerMetrics()
|
||||
current_state_cluster = faker_cluster_state.FakerModelCollector()
|
||||
sercon = strategies.BasicConsolidation(config=mock.Mock())
|
||||
sercon._compute_model = current_state_cluster.generate_scenario_1()
|
||||
sercon.ceilometer = mock.MagicMock(
|
||||
strategy = strategies.BasicConsolidation(
|
||||
config=mock.Mock(datasource="ceilometer"))
|
||||
strategy._compute_model = current_state_cluster.generate_scenario_1()
|
||||
strategy.ceilometer = mock.MagicMock(
|
||||
get_statistics=metrics.mock_get_statistics)
|
||||
return sercon.execute()
|
||||
return strategy.execute()
|
||||
|
||||
|
||||
class SolutionFakerSingleHyp(object):
|
||||
@staticmethod
|
||||
def build():
|
||||
metrics = fake.FakerMetricsCollector()
|
||||
metrics = fake.FakeCeilometerMetrics()
|
||||
current_state_cluster = faker_cluster_state.FakerModelCollector()
|
||||
sercon = strategies.BasicConsolidation(config=mock.Mock())
|
||||
sercon._compute_model = (
|
||||
strategy = strategies.BasicConsolidation(
|
||||
config=mock.Mock(datasource="ceilometer"))
|
||||
strategy._compute_model = (
|
||||
current_state_cluster.generate_scenario_3_with_2_nodes())
|
||||
sercon.ceilometer = mock.MagicMock(
|
||||
strategy.ceilometer = mock.MagicMock(
|
||||
get_statistics=metrics.mock_get_statistics)
|
||||
|
||||
return sercon.execute()
|
||||
return strategy.execute()
|
||||
|
||||
|
||||
class TestActionScheduling(base.DbTestCase):
|
||||
|
@ -26,16 +26,26 @@ from watcher.common import exception
|
||||
from watcher.decision_engine.model import model_root
|
||||
from watcher.decision_engine.strategy import strategies
|
||||
from watcher.tests import base
|
||||
from watcher.tests.decision_engine.model import ceilometer_metrics
|
||||
from watcher.tests.decision_engine.model import faker_cluster_state
|
||||
from watcher.tests.decision_engine.model import faker_metrics_collector
|
||||
from watcher.tests.decision_engine.model import monasca_metrics
|
||||
|
||||
|
||||
class TestBasicConsolidation(base.TestCase):
|
||||
|
||||
scenarios = [
|
||||
("Ceilometer",
|
||||
{"datasource": "ceilometer",
|
||||
"fake_datasource_cls": ceilometer_metrics.FakeCeilometerMetrics}),
|
||||
("Monasca",
|
||||
{"datasource": "monasca",
|
||||
"fake_datasource_cls": monasca_metrics.FakeMonascaMetrics}),
|
||||
]
|
||||
|
||||
def setUp(self):
|
||||
super(TestBasicConsolidation, self).setUp()
|
||||
# fake metrics
|
||||
self.fake_metrics = faker_metrics_collector.FakerMetricsCollector()
|
||||
self.fake_metrics = self.fake_datasource_cls()
|
||||
# fake cluster
|
||||
self.fake_cluster = faker_cluster_state.FakerModelCollector()
|
||||
|
||||
@ -50,11 +60,11 @@ class TestBasicConsolidation(base.TestCase):
|
||||
self.m_model = p_model.start()
|
||||
self.addCleanup(p_model.stop)
|
||||
|
||||
p_ceilometer = mock.patch.object(
|
||||
strategies.BasicConsolidation, "ceilometer",
|
||||
p_datasource = mock.patch.object(
|
||||
strategies.BasicConsolidation, self.datasource,
|
||||
new_callable=mock.PropertyMock)
|
||||
self.m_ceilometer = p_ceilometer.start()
|
||||
self.addCleanup(p_ceilometer.stop)
|
||||
self.m_datasource = p_datasource.start()
|
||||
self.addCleanup(p_datasource.stop)
|
||||
|
||||
p_audit_scope = mock.patch.object(
|
||||
strategies.BasicConsolidation, "audit_scope",
|
||||
@ -66,9 +76,10 @@ class TestBasicConsolidation(base.TestCase):
|
||||
self.m_audit_scope.return_value = mock.Mock()
|
||||
|
||||
self.m_model.return_value = model_root.ModelRoot()
|
||||
self.m_ceilometer.return_value = mock.Mock(
|
||||
self.m_datasource.return_value = mock.Mock(
|
||||
statistic_aggregation=self.fake_metrics.mock_get_statistics)
|
||||
self.strategy = strategies.BasicConsolidation(config=mock.Mock())
|
||||
self.strategy = strategies.BasicConsolidation(
|
||||
config=mock.Mock(datasource=self.datasource))
|
||||
|
||||
def test_cluster_size(self):
|
||||
size_cluster = len(
|
||||
@ -126,7 +137,7 @@ class TestBasicConsolidation(base.TestCase):
|
||||
instance_0_score = 0.023333333333333355
|
||||
self.assertEqual(
|
||||
instance_0_score,
|
||||
self.strategy.calculate_score_instance(instance_0, ))
|
||||
self.strategy.calculate_score_instance(instance_0))
|
||||
|
||||
def test_basic_consolidation_weight(self):
|
||||
model = self.fake_cluster.generate_scenario_1()
|
||||
|
@ -26,8 +26,8 @@ from watcher.decision_engine.model import element
|
||||
from watcher.decision_engine.model import model_root
|
||||
from watcher.decision_engine.strategy import strategies
|
||||
from watcher.tests import base
|
||||
from watcher.tests.decision_engine.model import ceilometer_metrics
|
||||
from watcher.tests.decision_engine.model import faker_cluster_state
|
||||
from watcher.tests.decision_engine.model import faker_metrics_collector
|
||||
|
||||
|
||||
class TestOutletTempControl(base.TestCase):
|
||||
@ -35,7 +35,7 @@ class TestOutletTempControl(base.TestCase):
|
||||
def setUp(self):
|
||||
super(TestOutletTempControl, self).setUp()
|
||||
# fake metrics
|
||||
self.fake_metrics = faker_metrics_collector.FakerMetricsCollector()
|
||||
self.fake_metrics = ceilometer_metrics.FakeCeilometerMetrics()
|
||||
# fake cluster
|
||||
self.fake_cluster = faker_cluster_state.FakerModelCollector()
|
||||
|
||||
|
@ -26,8 +26,8 @@ from watcher.decision_engine.model import element
|
||||
from watcher.decision_engine.model import model_root
|
||||
from watcher.decision_engine.strategy import strategies
|
||||
from watcher.tests import base
|
||||
from watcher.tests.decision_engine.model import ceilometer_metrics
|
||||
from watcher.tests.decision_engine.model import faker_cluster_state
|
||||
from watcher.tests.decision_engine.model import faker_metrics_collector
|
||||
|
||||
|
||||
class TestUniformAirflow(base.TestCase):
|
||||
@ -35,7 +35,7 @@ class TestUniformAirflow(base.TestCase):
|
||||
def setUp(self):
|
||||
super(TestUniformAirflow, self).setUp()
|
||||
# fake metrics
|
||||
self.fake_metrics = faker_metrics_collector.FakerMetricsCollector()
|
||||
self.fake_metrics = ceilometer_metrics.FakeCeilometerMetrics()
|
||||
# fake cluster
|
||||
self.fake_cluster = faker_cluster_state.FakerModelCollector()
|
||||
|
||||
|
@ -26,8 +26,8 @@ from watcher.decision_engine.model import element
|
||||
from watcher.decision_engine.model import model_root
|
||||
from watcher.decision_engine.strategy import strategies
|
||||
from watcher.tests import base
|
||||
from watcher.tests.decision_engine.model import ceilometer_metrics
|
||||
from watcher.tests.decision_engine.model import faker_cluster_state
|
||||
from watcher.tests.decision_engine.model import faker_metrics_collector
|
||||
|
||||
|
||||
class TestWorkloadBalance(base.TestCase):
|
||||
@ -35,7 +35,7 @@ class TestWorkloadBalance(base.TestCase):
|
||||
def setUp(self):
|
||||
super(TestWorkloadBalance, self).setUp()
|
||||
# fake metrics
|
||||
self.fake_metrics = faker_metrics_collector.FakerMetricsCollector()
|
||||
self.fake_metrics = ceilometer_metrics.FakeCeilometerMetrics()
|
||||
# fake cluster
|
||||
self.fake_cluster = faker_cluster_state.FakerModelCollector()
|
||||
|
||||
|
@ -23,8 +23,8 @@ from watcher.common import utils
|
||||
from watcher.decision_engine.model import model_root
|
||||
from watcher.decision_engine.strategy import strategies
|
||||
from watcher.tests import base
|
||||
from watcher.tests.decision_engine.model import ceilometer_metrics
|
||||
from watcher.tests.decision_engine.model import faker_cluster_state
|
||||
from watcher.tests.decision_engine.model import faker_metrics_collector
|
||||
|
||||
|
||||
class TestWorkloadStabilization(base.TestCase):
|
||||
@ -33,7 +33,7 @@ class TestWorkloadStabilization(base.TestCase):
|
||||
super(TestWorkloadStabilization, self).setUp()
|
||||
|
||||
# fake metrics
|
||||
self.fake_metrics = faker_metrics_collector.FakerMetricsCollector()
|
||||
self.fake_metrics = ceilometer_metrics.FakeCeilometerMetrics()
|
||||
|
||||
# fake cluster
|
||||
self.fake_cluster = faker_cluster_state.FakerModelCollector()
|
||||
|
Loading…
x
Reference in New Issue
Block a user