Added some data model diagrams, sequence diagrams and state machine diagrams. The state machine diagrams and sequence diagrams are built with PlantUML whereas data model diagrams are built with Dia. Also added some textual description with the sequence diagrams. Change-Id: Iffbb47b0f2d12ce63eeaa1531a1bd1a790d69e79 Closes-Bug: #1531802
13 KiB
System Architecture
This page presents the current technical Architecture of the Watcher system.
Overview
Below you will find a diagram, showing the main components of Watcher:
Components
AMQP Bus
The AMQP message bus handles internal asynchronous communications between the different Watcher components.
Cluster History Database
This component stores the data related to the Cluster History <cluster_history_definition>
.
It can potentially rely on any appropriate storage system (InfluxDB, OpenTSDB, MongoDB,...) but will probably be more performant when using Time Series Databases which are optimized for handling time series data, which are arrays of numbers indexed by time (a datetime or a datetime range).
Cluster Model Database
This component stores the data related to the Cluster Data Model <cluster_data_model_definition>
.
Watcher API
This component implements the REST API provided by the Watcher system to the external world.
It enables the Administrator <administrator_definition>
of a
Cluster <cluster_definition>
to control and
monitor the Watcher system via any interaction mechanism connected to
this API:
CLI <archi_watcher_cli_definition>
- Horizon plugin
- Python SDK
You can also read the detailed description of Watcher API.
Watcher Applier
This component is in charge of executing the Action Plan <action_plan_definition>
built by
the Watcher Decision Engine <watcher_decision_engine_definition>
.
It connects to the message bus <amqp_bus_definition>
and launches
the Action Plan <action_plan_definition>
whenever a
triggering message is received on a dedicated AMQP queue.
The triggering message contains the Action Plan UUID.
It then gets the detailed information about the Action Plan <action_plan_definition>
from the
Watcher Database <watcher_database_definition>
which contains the list of Actions <action_definition>
to launch.
It then loops on each Action <action_definition>
, gets the associated
class and calls the execute() method of this class. Most of the time,
this method will first request a token to the Keystone API and if it is
allowed, sends a request to the REST API of the OpenStack service which
handles this kind of atomic Action <action_definition>
.
Note that as soon as Watcher Applier <watcher_applier_definition>
starts handling a given Action <action_definition>
from the list, a
notification message is sent on the message bus <amqp_bus_definition>
indicating
that the state of the action has changed to
ONGOING.
If the Action <action_definition>
is successful, the
Watcher Applier <watcher_applier_definition>
sends a notification message on the bus <amqp_bus_definition>
informing the
other components of this.
If the Action <action_definition>
fails, the Watcher Applier <watcher_applier_definition>
tries to rollback to the previous state of the Managed resource <managed_resource_definition>
(i.e. before the command was sent to the underlying OpenStack
service).
Watcher CLI
The watcher command-line interface (CLI) can be used to interact with the Watcher system in order to control it or to know its current status.
Please, read the detailed documentation about Watcher CLI
Watcher Database
This database stores all the Watcher domain objects which can be
requested by the Watcher API <archi_watcher_api_definition>
or
the Watcher CLI <archi_watcher_cli_definition>
:
Audit templates <audit_template_definition>
Audits <audit_definition>
Action plans <action_plan_definition>
Actions <action_definition>
Goals <goal_definition>
The Watcher domain being here "optimization of some resources provided by an OpenStack system".
Watcher Decision Engine
This component is responsible for computing a set of potential
optimization Actions <action_definition>
in order to fulfill
the Goal <goal_definition>
of an Audit <audit_definition>
.
It first reads the parameters of the Audit <audit_definition>
from the associated
Audit Template <audit_template_definition>
and
knows the Goal <goal_definition>
to achieve.
It then selects the most appropriate Strategy <strategy_definition>
depending on how
Watcher was configured for this Goal <goal_definition>
.
The Strategy <strategy_definition>
is then
dynamically loaded (via stevedore). The Watcher Decision Engine <watcher_decision_engine_definition>
calls the execute() method of the Strategy <strategy_definition>
class which
generates a solution composed of a set of Actions <action_definition>
.
These Actions <action_definition>
are scheduled in
time by the Watcher Planner <watcher_planner_definition>
(i.e., it generates an Action Plan <action_plan_definition>
).
In order to compute the potential Solution <solution_definition>
for the Audit,
the Strategy <strategy_definition>
relies on two
sets of data:
- the current state of the
Managed resources <managed_resource_definition>
(e.g., the data stored in the Nova database) - the data stored in the
Cluster History Database <cluster_history_db_definition>
which provides information about the past of theCluster <cluster_definition>
So far, only one Strategy <strategy_definition>
can be associated
to a given Goal <goal_definition>
via the main Watcher
configuration file.
Data model
The following diagram shows the data model of Watcher, especially the functional dependency of objects from the actors (Admin, Customer) point of view (Goals, Audits, Action Plans, ...):
Sequence diagrams
The following paragraph shows the messages exchanged between the different components of Watcher for the most often used scenarios.
Create a new Audit Template
The Administrator <administrator_definition>
first
creates an Audit template <audit_template_definition>
providing at least the following parameters:
- A name
- A goal to achieve
The Watcher API just makes sure that the
goal exists (i.e. it is declared in the Watcher configuration file) and
stores a new audit template in the Watcher Database <watcher_database_definition>
.
Create and launch a new Audit
The Administrator <administrator_definition>
can
then launch a new Audit <audit_definition>
by providing at least
the unique UUID of the previously created Audit template <audit_template_definition>
:
A message is sent on the AMQP bus <amqp_bus_definition>
which triggers
the Audit in the Watcher Decision Engine <watcher_decision_engine_definition>
:
The Watcher Decision Engine <watcher_decision_engine_definition>
reads the Audit parameters from the Watcher Database <watcher_database_definition>
.
It instantiates the appropriate Strategy <strategy_definition>
(using entry
points) associated to the Goal <goal_definition>
of the Audit <audit_definition>
(it uses the
information of the Watcher configuration file to find the mapping
between the Goal <goal_definition>
and the Strategy <strategy_definition>
python
class).
The Watcher Decision Engine <watcher_decision_engine_definition>
also builds the Cluster Data Model <cluster_data_model_definition>
.
This data model is needed by the Strategy <strategy_definition>
to know the
current state and topology of the audited Openstack cluster <cluster_definition>
.
The Watcher Decision Engine <watcher_decision_engine_definition>
calls the execute() method of the instantiated Strategy <strategy_definition>
and provides the
data model as an input parameter. This method computes a Solution <strategy_definition>
to achieve the
goal and returns it to the Decision Engine <watcher_decision_engine_definition>
.
At this point, actions are not scheduled yet.
The Watcher Decision Engine <watcher_decision_engine_definition>
dynamically loads the Watcher Planner <watcher_planner_definition>
implementation which is configured in Watcher (via entry points) and
calls the schedule() method of this class with the
solution as an input parameter. This method finds an appropriate
scheduling of Actions <action_definition>
taking into account
some scheduling rules (such as priorities between actions). It generates
a new Action Plan <action_plan_definition>
with status
RECOMMENDED and saves it into the Watcher Database <watcher_database_definition>
.
The saved action plan is now a scheduled flow of actions.
If every step executed successfully, the Watcher Decision Engine <watcher_decision_engine_definition>
updates the current status of the Audit to SUCCEEDED in
the Watcher Database <watcher_database_definition>
and sends a notification on the bus to inform other components that the
Audit <audit_definition>
was successful.
Launch Action Plan
The Administrator <administrator_definition>
can
then launch the recommended Action Plan <action_plan_definition>
:
A message is sent on the AMQP bus <amqp_bus_definition>
which triggers
the Action Plan <action_plan_definition>
in the
Watcher Applier <watcher_applier_definition>
:
The Watcher Applier <watcher_applier_definition>
will get the description of the flow of Actions <action_definition>
from the Watcher Database <watcher_database_definition>
and for each Action <action_definition>
it will instantiate a
corresponding Action <action_definition>
handler python
class.
The Watcher Applier <watcher_applier_definition>
will then call the following methods of the Action <action_definition>
handler:
- validate_parameters(): this method will make sure
that all the provided input parameters are valid:
- If all parameters are valid, the Watcher Applier moves on to the next step.
- If it is not, an error is raised and the action is not executed. A notification is sent on the bus informing other components of the failure.
- preconditions(): this method will make sure that all conditions are met before executing the action (for example, it makes sure that an instance still exists before trying to migrate it).
- execute(): this method is what triggers real commands on other OpenStack services (such as Nova, ...) in order to change target resource state. If the action is successfully executed, a notification message is sent on the bus indicating that the new state of the action is SUCCEEDED.
If every action of the action flow has been executed successfully, a
notification is sent on the bus to indicate that the whole Action Plan <action_plan_definition>
has
SUCCEEDED.
State Machine diagrams
Audit State Machine
The following diagram shows the different possible states of an Audit <audit_definition>
and what event makes
the state change to a new value:
Action Plan State Machine
The following diagram shows the different possible states of an Action Plan <action_plan_definition>
and what
event makes the state change to a new value: